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Abstract
We propose a method to improve existing color-difference

formulas with additional visual data from color discrimination

experiments. Color-difference formulas are treated as mean

functions of Gaussian processes, and the visual data are con-

sidered as observations of these processes. Gaussian process re-

gression is applied to predict unknown color differences. The

method was evaluated with a combination of the CIEDE2000

color-difference formula and the RIT-DuPont dataset. The stan-

dardized residual sum of squares (STRESS) index between vi-

sual and computed color differences was determined for several

sets of visual data. The results show a STRESS index of 6.94

(CIEDE2000: 19.47) for the RIT-DuPont dataset. The prediction

performance on other visual data (BFD, Leeds, Witt) is not sig-

nificantly different from CIEDE2000 at a 95% confidence level.

Introduction
A perceptually uniform color space is required especially

for quality control and various color technology applications.

The CIELAB color space was designed for this purpose in 1976.

It is used in many standards of the printing, graphic arts, coating,

and automotive industries. Several drawbacks of CIELAB were

discovered by now, including its lack of perceptual uniformity

and hue linearity. Nevertheless, CIELAB could not be replaced

by an improved color space (such as DIN99 [1, 2]) in everyday

applications. Since changing common practice is difficult, this is

unlikely to happen in the near future.

Unfortunately, for some applications the perceptual unifor-

mity of CIELAB is not sufficient, especially when color toler-

ances need to be defined. Data derived from color discrimination

experiments (e.g., RIT-DuPont [3]) show the disagreement be-

tween perceived differences and Euclidean distances in CIELAB.

Suprathreshold ellipsoids, which approximately define all colors

with similar perceived distance to a color center, are of partic-

ular interest. Figure 1 shows four such ellipsoids derived from

the RIT-DuPont data [4]. They differ significantly from spheres,

which is a good indicator of perceptual non-uniformity of the

underlying color space.

To overcome the non-uniformity of CIELAB, various color-

difference formulas were created (e.g., CMC [5], CIE94 [6],

and CIEDE2000 [7]). Figure 1 shows that CIEDE2000 predic-

tions differ not only from RIT-DuPont suprathreshold ellipsoids

(which can be considered reliable [4]), but also from the corre-

sponding color-difference vectors. A comparison of the entire

RIT-DuPont dataset with corresponding CIEDE2000 predictions

yields a PF/3 measure [8] of 19.56 and a standardized residual

sum of squares (STRESS) index [9, 10] of 19.47.

Color-difference formulas are designed by fitting parame-

ters of predefined functions to visual data [11]. There are two

main problems with this approach: 1. Visual data from a single

experiment are usually sparsely distributed across CIELAB, and

combining datasets obtained by different psychophysical meth-

ods (e.g., method of constant stimuli or gray-scale method [12])

is highly controversial. 2. The visual data might be overfitted,

so that the resulting color-difference formula models noise and

loses its generalization ability [13, 14].

The aim of this paper is not to create new color-difference

formulas, but to improve existing formulas using visual data.

A possible application is to enhance the prediction accuracy

around particular color centers, e.g., a company’s corporate col-

ors. Visual experiments at these color centers could improve the

standardized global color-difference formula, provided that they

were conducted under similar viewing conditions [15].

The proposed method is based on Gaussian process regres-

sion (GPR), a prediction approach often used in a geostatistical

context (usually referred to as Kriging). It allows to incorporate

the uncertainty of the visual data, which is important due to high

inter- and intra-observer noise in experimental data [14, 16].
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Figure 1. Four color centers recommended by the CIE for study [17].

RIT-DuPont suprathreshold ellipsoids (blue) with the corresponding T50 and

-T50 color-difference vectors in comparison with CIEDE2000 iso-distance

contours (black). Each point on a contour has a computed distance of 1 to

the respective color center. Projections on the a*b*-plane.

What Is Gaussian Process Regression?
A detailed description of Gaussian processes and Gaussian

process regression (GPR) goes far beyond the scope of this pa-

per. A good introduction to this topic including the mathematical

background is given by Rasmussen and Williams [18]. In the

following we will discuss the central equations to allow a quick

implementation of the method. To illustrate the basic concept, let
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us consider a simple example.

An Example from Mining
Imagine we are planning a gold mine and want to find out

about gold concentrations in the area of interest. Drilling is ex-

pensive and should be avoided as far as possible. The idea is to

treat the whole area as a Gaussian process [18] of gold concen-

trations. The concentration at each location is modeled as a nor-

mally distributed random variable. The joint probability of any

finite number of these random variables is again considered as

normally distributed. By drilling we can determine the gold con-

centration at a specific location with some uncertainty. It is un-

likely that the gold concentration changes drastically in the vicin-

ity of the borehole. Ideally, we have an idea of the correlation of

concentrations between two locations. This correlation can be

modeled by a covariance function. If typical gold concentrations

of the region are known, we can also include this knowledge as

a mean function. The resulting Gaussian process is completely

defined by its mean and covariance functions. Using a Gaussian

process model and a few boreholes, GPR allows us to predict the

gold concentration at any location in the region. Based on our

model we can not only compute the most likely concentration at

a point of interest, but also the uncertainty of this prediction.

GPR for Improving Color-Difference Formulas
Interestingly, color-difference research and mining have a

lot in common. Instead of gold deposits we are interested in

perceived differences between colors. Color discrimination ex-

periments at selected color centers are our boreholes from the

mining example. The result of such an experiment is a set of per-

ceived distances ∆V i for color pairs xi, where xi = (xi
1,x

i
2) and

xi
1,x

i
2 ∈ CIELAB, i = 1, . . . ,n. These observed distances are af-

fected by noise and usually sparsely distributed across CIELAB.

A perceptually optimal color-difference formula is a func-

tion that maps each color pair to its perceived color difference,

i.e.:

∆EV :

{
CIELAB×CIELAB 7−→ R

+
0

x → ∆V (x1,x2)
. (1)

Standardized color-difference equations such as CIE94 or

CIEDE2000 are rough approximations of ∆EV . Unfortunately,

we only have limited knowledge of the disagreement between a

given color-difference formula and the ideal ∆EV . This is why we

use a Gaussian process model to improve color-difference for-

mulas with data from visual experiments. We assume that each

color difference is a normally distributed random variable, and

that the joint distribution of any number of color differences is

again normally distributed. As previously mentioned, our Gaus-

sian process is completely defined by its mean and covariance

functions. Any given color-difference formula can be used as a

mean function, provided that it returns an initial guess for ∆EV .

In case we use CIEDE2000, this mean function becomes

m(x) = ∆E00(x1,x2), (2)

where x = (x1,x2) is a pair of CIELAB colors x1 and x2.

The crucial part of Gaussian process regression is the selec-

tion of the covariance function, which describes the correlation

between color pairs. A difference vector xd = x1 − x2 is associ-

ated with each color pair x = (x1,x2). We assume that the corre-

lation between two color pairs depends on their distance in color

space as well as the angle and the length difference between their

difference vectors. This means that close color pairs with simi-

larly aligned difference vectors of similar length are highly cor-

related. For two color pairs x = (x1,x2) and y = (y1,y2) and the

corresponding difference vectors xd = x1 − x2 and yd = y1 − y2

we define the following covariance function:

k(x,y) = c(x,y) · exp

[
−

(
φ

2
x,y

l1
+

αx,y

l2
+

ρx,y

l3

)]
, (3)

where

φx,y =

∥∥∥∥
(

x1 + x2

2

)
−

(
y1 + y2

2

)∥∥∥∥
2

(4)

is a measure of distance between x and y,

αx,y = arccos

[
abs(xT

d yd)

‖xd‖2 · ‖yd‖2

]
(5)

represents the angle between xd and yd ,

ρx,y = abs(‖xd‖2 −‖yd‖2) (6)

is the absolute length difference of xd and yd , and

c(x,y) = 1− exp(−‖xd‖2 · ‖yd‖2) (7)

is a normalization term that forces the correlation to be zero if

xd = 0 or yd = 0. An illustration of the three influence fac-

tors φx,y, αx,y, and ρx,y is provided in figure 2. The covariance

function is symmetric by construction: k(x,y) = k(y,x). It is a

normalized product of three functions: one squared-exponential

type covariance function and two modified exponential type co-

variance functions [18].

For x = y all three terms are zero, so that k(x,y) = c(x,y).
With increasing distance, angle, and length difference the covari-

ance function approaches its minimum k(x,y) = 0. The scaling

parameters l1, l2, and l3 control the correlation decay and can be

adjusted to a particular problem. A small parameter li means that

the corresponding term has a high impact on the resulting corre-

lation, whereas a large li means that the correlation function does

not strongly depend on this influence factor.
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Figure 2. Influence factors φx,y (distance), αx,y (angle), and ρx,y (length

difference) on the correlation of two color pairs x and y.

So far we have defined the Gaussian process by its mean

and covariance functions (eqns. (2) and (3)). In order to im-

prove a color-difference formula with the visual data (xi,∆V i),
i = 1, . . . ,n, we use Gaussian process regression to calculate the

predicted color difference ∆V ∗ for any color pair x∗ [18]:

∆V ∗ = m∗+k∗(K+σ
2
ε I)−1(v−m)︸ ︷︷ ︸

correction term

, (8)
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where ∆V ∗ is the most likely color difference given the obser-

vations, m∗ = m(x∗) is the value of the mean function at x∗,

k∗ = (k(x∗,x1), . . . ,k(x∗,xn)) is a vector of covariances between

x∗ and all observations,

K = {k(xi,x j)}n×n =




k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)


 (9)

is a symmetric, positive semidefinite covariance matrix, σ
2
ε I

is an n × n dimensional noise matrix with noise variance σ
2
ε ,

v = (∆V 1, . . . ,∆V n)T are the observed color differences, and

m = (m(x1), . . . ,m(xn))T are the values of the mean function

at the observations. Note that the mean function represents the

color-difference equation to be improved (e.g., CIEDE2000). Its

prediction m∗ is corrected by k∗(K+σ
2
ε I)−1(v−m) to incorpo-

rate the additional visual data as shown in eq. (8).

The noise term σ
2
ε I expresses our assumption that the ob-

served color differences ∆V i are affected by Gaussian noise that

is uncorrelated between color pairs. The unknown variance σ
2
ε

has to be adjusted to the observations along with the decay pa-

rameters l1, l2, and l3.

Possible Improvements of the Model
Please note that negative color-difference predictions ∆V ∗

arise if k∗(K+σ
2
ε I)−1(v−m)<−m∗. Although this was only

observed for extremely small color differences, it needs to be

intercepted in an implementation of the method. For instance,

we can force the corrected color-difference prediction to be non-

negative by introducing a function f as follows:

∆V ∗ = m∗+ f
[
k∗(K+σ

2
ε I)−1(v−m), m∗

]
, (10)

where f satisfies

f
[
k∗(K+σ

2
ε I)−1(v−m), m∗

]
≥−m∗. (11)

The function f should be strictly monotonically increasing, con-

tinuously differentiable, and it should leave the correction term

unchanged for m∗ �
∣∣k∗(K+σ

2
ε I)−1(v−m)

∣∣.
Another issue is the positive semidefiniteness of the covari-

ance function k, which ensures the positive semidefiniteness of

the covariance matrix K. One possible way to create a valid

covariance function is to combine several covariance functions

by summation or multiplication [18]. This could be a guideline

for further investigations regarding the validity of our covariance

function. It should be mentioned that we did not encounter any

problems during the evaluation of our method: the covariance

matrix K was positive semidefinite for all sets of visual data and

parameters l1, l2, l3, and σ
2
ε we used.

An in-depth analysis of color discrimination data should be

performed to design a covariance function that optimally reflects

the properties of the visual data. This may lead to an improved

prediction performance especially on unknown data.

Adjusting the Parameters
There are different ways to adjust the parameters of the

Gaussian process model to a particular problem. One is to maxi-

mize the marginal likelihood p
(
v | x̂,{l1, l2, l3,σ

2
ε }
)

[18], i.e., the

probability of the observations v given the vector of color pairs

x̂ = {xi}n
i=1 and a parameter set {l1, l2, l3,σ

2
ε }.

Another option is cross-validation, which is a technique to

evaluate the prediction performance of a method on unknown

data. In our case the visual data could be randomly split into a

larger training set and a smaller test set. The Gaussian process,

more precisely its covariance function k, would be adjusted to the

training set data. The color differences of the test set would then

be predicted with different combinations of parameters. This

could be performed iteratively for many randomly chosen train-

ing and test sets. The parameter set yielding the highest predic-

tion accuracy would eventually be considered optimal.

Experience shows that local optima are likely in both cases.

The parameter sets corresponding to these optima can be seen as

“particular interpretations of the data” [18]. This is especially

inconvenient if the amount of data is large (resulting in a large

covariance matrix K), and if there are many parameters to opti-

mize. In some cases the computational effort may even be too

high to find a global optimum. In other cases, there may be many

local optima of almost equal optimality corresponding to vastly

different parameter sets. In these situations one is forced to man-

ually select parameters that represent a desirable interpretation of

the data.

For the evaluation of the method the parameters were man-

ually chosen as l1 = 20, l2 = 7.5, l3 = 10, and σ
2
ε = 0.25. These

parameters were roughly adjusted to the orders of magnitude of

the corresponding influence factors φx,y, αx,y, and ρx,y. They

were also found to allow for a good generalization performance

of the method. Note that this parameter set may not be ideal

and efficient parameter optimization should be subject to further

research.

Results and Discussion
The performance of several color-difference equations was

evaluated on four sets of visual data: RIT-DuPont (312 color

differences) [3], BFD-D65 (2028) [19], Leeds pair compari-

son (104) [20], and Witt (418) [21]. Our method was trained

with the RIT-DuPont data, meaning that the covariance matrix K

was created from the 312 RIT-DuPont color pairs. We chose this

dataset because of its rather small size and high reliability. The

CIEDE2000 color-difference formula ∆E00 was used as a mean

function. As already mentioned, the parameters were manually

chosen as l1 = 20, l2 = 7.5, l3 = 10, and σ
2
ε = 0.25.

The STRESS index [9, 10] was computed for the visual and

the computed color differences. The results are shown in table 1.

RIT- BFD- Leeds- Witt

DuPont D65 PC

CIELAB 33.42 40.98 36.58 51.71

CMC 27.44 26.60 26.77 35.04

CIE94 20.31 32.88 32.69 31.94

CIEDE2000 19.47 24.09 20.98 30.22

GPR 6.94
∗

24.55 17.64 32.87

Table 1. STRESS index comparison. An asterisk indicates

that the GPR-based predictions are significantly different

from the CIEDE2000 predictions on the respective dataset

(according to the F-test with a 95% confidence interval).

The STRESS index allows a statistical judgment of the pre-

diction performance of color-difference formulas. To determine

whether two formulas ∆Ea and ∆Eb are significantly different,

one has to take the squared ratio of the corresponding STRESS

values Sa and Sb on the same test data [9, 10]:

Sr =
S2

a

S2
b

, Sa > Sb. (12)
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Let Fc be the value of the corresponding F-distribution with n−1

degrees of freedom (number of test color pairs minus one) and

the desired confidence level, e.g., 95%. If Sr lies outside the

confidence interval [Fc, 1/Fc], the predictions of the two color-

difference formulas are significantly different. For example,

to compare CIEDE2000 and our GPR approach on the RIT-

DuPont data with a 95% confidence level, one would compute

Sr = (19.47)2/(6.94)2 = 7.87. This squared ratio is (a) greater

than one, which indicates that the GPR approach performs better

than CIEDE2000, and lies (b) outside the 95% confidence in-

terval [Fc, 1/Fc] = [0.729, 1.372], meaning that this difference is

statistically significant [10]. Note that the number of color pairs

n was set to 156 for the RIT-DuPont dataset, because the T50 and

-T50 color-difference vectors are not really independent [3, 10].

Additional F-tests show that the prediction performance of

our method on the remaining three datasets is not significantly

different from CIEDE2000 at a 95% confidence level.
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Figure 3. Suprathreshold ellipsoids (blue) fitted to the RIT-DuPont T50 and

-T50 vectors (black) compared to CIEDE2000 iso-distance contours (black)

and GPR iso-distance contours (red). 15 out of 19 RIT-DuPont color centers

are shown. All ellipsoids and contours are twice their original size and are

projected on the CIELAB a*b*-plane.

The GPR-based method was expected to achieve a better

STRESS value on the RIT-DuPont dataset than all other color-

difference equations (see table 1), because this dataset was used

to train the method. Note that the STRESS value of the GPR-

based predictions on the RIT-DuPont data is not zero. This fol-

lows directly from our assumption that the observed color differ-

ences are affected by additive noise with variance σ
2
ε (eq. (8)).

As a consequence, GPR-predicted color differences differ from

the actual observations, even for color pairs included in the

(noisy) training data.

Interestingly, the STRESS difference between CIEDE2000

and the GPR-based method is statistically not significant for all

other investigated datasets according to the F-test. This indicates

that the underlying CIEDE2000 mean function has a stabilizing

effect on the method. In case the test data show little correla-

tion with the training data, the method can fall back on its mean

function.

The results show that GPR improves the CIEDE2000 pre-

dictions on the Leeds-PC (pair comparison) data (STRESS

17.64 vs. 20.98), whereas the predictions on the gray-scale-based

datasets BFD-D65 (24.55 vs. 24.09) and Witt (32.87 vs. 30.22)

are less accurate. Even though these differences are statistically

not significant, the prediction performance of the GPR-based

method seems to depend on the psychophysical method used to

obtain the visual data — the training data, RIT-DuPont, are based

on pair comparison experiments. Further investigations are re-

quired to validate this assumption.

Figure 3 provides an overview of the CIEDE2000 and the

GPR-based predictions at selected RIT-DuPont color centers.

The difference is especially evident at color centers 6, 8, 12, and

18, where the GPR-based predictions represent the RIT-DuPont

color-difference vectors more accurately.
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Figure 4. Four color centers recommended by the CIE for study [17],

equivalent to RIT-DuPont color centers 1, 3, 7, and 8. RIT-DuPont

suprathreshold ellipsoids (blue) and the corresponding T50 and -T50 color-

difference vectors in comparison with CIEDE2000 iso-distance contours

(black) and GPR-based iso-distance contours (red). Each point on a con-

tour has a computed distance of 1 to the respective color center. A com-

parison of STRESS values is shown under each figure. Projections on the

a*b*-plane.

Figure 4 shows RIT-DuPont suprathreshold ellipsoids [4] in

comparison with CIEDE2000 and GPR-based iso-distance con-

tours at four color centers. In figure 4 (a) an improvement may

not be obvious from the plot — the STRESS index, however,

indicates that the GPR approach is more accurate. Figure 4 (b)

shows that CIEDE2000 underestimates the perceived distances

represented by the longest color-difference vectors, which is

reflected by a higher STRESS index for CIEDE2000. Fig-

ures 4 (c) and (d) show that CIEDE2000 overestimates the color-

differences along the major principal axes of the RIT-DuPont

ellipsoids, whereas the GPR-based predictions are closer to the

color-difference vectors. This is confirmed by the STRESS val-

ues: the GPR-based predictions are more accurate in both cases.

Figure 5 provides another comparison of CIEDE2000 and
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Figure 5. RIT-DuPont color center 17 projected on the CIELAB a*b*-plane.

Suprathreshold ellipsoid (blue) fitted to the RIT-DuPont T50 and -T50 vec-

tors compared to CIEDE2000 iso-distance contour (black) and GPR-based

iso-distance contour (red). STRESS values: CIEDE2000 4.50, GPR 2.41.

the corresponding GPR-based predictions at color center 17 of

the RIT-DuPont data. We use this particular example because

there is no color-difference vector with a similar direction as

the longest principle axis of this suprathreshold ellipsoid [14]

(note that the figure shows a projection on the a∗b∗-plane).

Consequently, even though the GPR-based iso-distance contour

agrees less with the RIT-DuPont ellipsoid, this does not mean

that it agrees less with the visual data. In fact, along the ma-

jor principle axis the method computes a trade-off between the

CIEDE2000 mean function and the RIT-DuPont color-difference

vectors. Along the minor principal axis the GPR-based pre-

dictions agree with the color-difference vectors as well as the

suprathreshold ellipsoid, whereas the CIEDE2000 predictions

differ somewhat from the visual data.

To illustrate the fact that there are many reasonable param-

eter combinations (see section “Adjusting the Parameters”), fig-

ure 6 shows the prediction performance of our method on dif-

ferent sets of visual data under increasing noise variance σ
2
ε .

It is evident that a higher noise variance decreases the predic-

tion accuracy on the RIT-DuPont training data, because the data

are considered less reliable with increasing noise. In all cases

the STRESS index converges against that of the mean function

(CIEDE2000) for the respective dataset, because the influence of

the correction term (eq. (8)) drops with increasing noise. This

causes the STRESS index to decrease for BFD-D65 and Witt,

and to increase for RIT-DuPont and Leeds-PC. Choosing a par-

ticular σ
2
ε can be seen as choosing a trade-off between high ac-

curacy on the training data and good generalization ability.

A drawback of the GPR-based method is the computational

effort required to determine a single color difference. It increases
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Figure 6. STRESS index (blue curve) under varying noise variance σ
2
ε

for different sets of visual data. The CIEDE2000 STRESS index for the

respective dataset is shown in red. Note the differently scaled y-axes.

with increasing number n of observations, because the covari-

ance function needs to be evaluated n times to calculate the vector

k∗ from eq. (8). Fortunately, the vector (K+σ
2
ε I)−1(v−m) can

be precalculated — what remains is the evaluation of an inner

product. In summary, the computational complexity should be

sufficiently low to improve color-difference formulas at specific

color centers with a few additional observations.

Conclusions

With the proposed Gaussian process approach for the im-

provement of color-difference formulas we could significantly

increase the prediction accuracy of CIEDE2000 on the RIT-

DuPont dataset. The predictions for the BFD-D65, Leeds-PC,

and Witt datasets, which were not used to train our Gaussian

process model, did not differ from CIEDE2000 on a statistically

significant level. It should be investigated whether the prediction

accuracy decreases if the training and the test data were obtained

by different psychophysical methods (pair comparison or gray-

scale method).

Although the computational complexity increases rapidly

with the amount of training data, it seems feasible to systemati-

cally improve color-difference formulas at particularly important

color centers.

As the covariance function k represents our estimated model

of the visual data, we hope that the prediction accuracy on un-

known data can be improved with an optimized covariance func-

tion in the future. The same applies to the parameters of the

covariance function. Further research is necessary to find an ef-

fective optimization approach to adjust these parameters to the

visual data.
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