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Abstract
Gamut boundary determination is an important step in de-

vice characterisation and colour gamut mapping. Many different
algorithms for the determination of colour gamuts are proposed
in the literature. They vary in accuracy, computational efficiency,
and complexity of the resulting triangulated gamut surface. Re-
cently, an algorithm called uniform segment visualization (USV)
was developed. The gamut surfaces produced by the USV algo-
rithm is more accurate than the ones produced by the the segment
maxima algorithm, while at the same time, they are significantly
simpler than the ones produced by the somewhat more accurate
modified convex hull. In this paper, we propose a new method.
First, an accurate gamut boundary is computed using the modi-
fied convex hull. The resulting surface is then simplified using an
established mesh decimation technique. This results in surfaces
that are significantly more accurate than the ones produced by
the USV algorithm at a comparable complexity.

Introduction
A colour gamut is the set of all colours that can be pro-

duced by a given device or that are present in a given image.
Although these sets are in principle discrete, gamuts are most of-
ten represented as volumes or blobs in a 3D colour space using a
gamut boundary descriptor. When images are to be reproduced
between different devices, the problem of gamut mismatch has to
addressed. This is usually referred to as gamut mapping. There
is a vast amount of literature about the gamut mapping problem.
Fortunately, much of this was summarised by Morovic and Luo
in 2001 [1].

Spatial gamut mapping has become an active field of re-
search in the recent years [2, 3]. In contrast to the conventional
colour gamut mapping algorithms, where the mapping can be
performed once and for all and stored as a LUT, e.g., in an ICC
profile, the spatial algorithms are image dependent by nature.
Thus, the algorithms have to be applied for every single image
to be reproduced, and make direct use of the gamut boundary
descriptors many times during the mapping process.

There are many algorithms available that can be used to cal-
culate an approximation to the color gamut of an image or a de-
vice. The gamut boundaries that are constructed can then be uti-
lizied for the purpose of gamut mapping or comparison of gamut
volumes. There are several advantages in having a compact de-
scription of the gamut surface, e.g., reducing the computation
time of the algorithms using the gamut surface. The reduced sur-
face complexity makes it possible to use less data to describe the
gamut, which can be a factor when embedding gamut informa-
tion in profiles. Perhaps more importantly, calculations of inter-
section points between the gamut surface and lines can be done
in less time, improving the performance of gamut mapping algo-
rithms. Any inaccuracies in the gamut surfaces might introduce
errors in the result of the gamut mapping, possibly affecting the

analysis of the results. Therefore, having a simple but accurate
gamut surface is the goal of our work.

Bakke et al. [4] compared many methods for the determi-
nation of gamut boundaries for accuracy on simulated device
data. It was found that the modified convex hull algorithm pro-
posed by Balasubramanian and Dalal [5] consistently provided
the most accurate gamut surfaces. However, the resulting gamut
surfaces can consist of very many triangles, slowing down the
gamut mapping algorithm. To address this, an algorithm called
uniform segment visualization (USV) was recently proposed [6].
It was based on combining the modified convex hull algorithm
and a sphere tesselation technique for uniform segmentation of
the color space and is described in more detail below. The USV
algorithm results in surfaces that can be significantly simpler than
the ones provided by the modified convex hull at the price of low-
ering the accuracy somewhat. The number of segments can be
determined by the user, but he still has to deal with the trade-off
between accuracy and complexity.

Here, we propose an alternative approach. First an accu-
rate gamut boundary is computed using the modified convex hull
algorithm. The resulting surface is then simplified using an es-
tablished mesh decimation technique. There are several mesh
decimation algorithms that can be used for this purpose. Previ-
ous surveys have shown that an algorithm that performs mesh
simplification using a local optimization criterion to collapse tri-
angle edges into points performs well for generic triangulated
surfaces [7]. We investigate the performance of this mesh deci-
mation technique when applied to color gamuts, and compare the
results to the USV algorithm for gamut surfaces having a vary-
ing number of triangles. The surfaces are compared to a refer-
ence gamut, and the differences are quantified using a previously
proposed metric for gamut differences [4]

The paper is organised as follows. First, the most relevant
establised GBD algorithms are described in more detail. We then
look at mesh decimation techniques and our choice of simplifi-
cation algorithm. We describe our proposed method, and look
at implementation details. The resulting gamut boundary accu-
racies of the new method and the USV are compared for five
devices, and the results are presented and discussed.

Established GBDs

Our goal is to develop a new GDB algorithm and compare
it to the USV algorithm. For reference, we present also the mod-
ified convex hull algorithm and the segment maxima algorithm,
since they both appear as important parts in the two compared al-
gorithms, and since the modified convex Hull is used for generat-
ing the reference gamut for the comparisons of accuracy. A refer-
ence gamut with approximately 100 000 surface points is shown
in Figure 1.
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Figure 1. Reference gamut of Hitachi monitor with approximately 100 000

surface point. The gamut surface was produced by the modified convex hull

algorithm.

Modified Convex Hull
One of the methods in use is to find the convex hull of the

data points by using, e.g., the quickhull [8] algorithm. This re-
sults in a convex approximation of the gamut [9, 10] that does
not follow the concavities typically found in both device and im-
age gamuts when represented in colour spaces typically used for
gamut mapping. An effective method to deal with this deficiency
was introduced by Balasubramanian and Dalal [5]. They sug-
gested to pre-process the data points using a non-linear gamma
function based on the distance from the color to a center point
within the gamut, before the convex hull is calculated from the
altered points. By varying the γ parameter from 1 to 0, the detail
level of the gamut can be increased by making the object more
concave. A γ value of 1 leaves the points unchanged before the
convex hull is applied, while smaller parameter values make the
pre-processed data more convex. In the limiting case γ = 0, all
the data points are mapped to a spherical surface and are thus in-
cluded in the convex hull. With an optimal choice of γ , the final
gamut boundary will closely follow the perceived surface of the
data points. Previous work [4] has suggested γ = 0.2 as a rea-
sonable value for a variety of gamuts and data sets, and that with
a good choice of γ , the modified convex hull is consistently the
most accurate algorithm for genererating gamut surfaces from
generic data points.

Segment Maxima
Segment maxima [11] is another method used to find the

gamut boundary. It starts by performing a subdivision of the
color space into segments based on the spherical coordinates of
the colors relative to a chosen centre, e.g., the centre of the gamut
or the centre of the colour space. Each segment represents a uni-
form interval of spherical coordinates (polar and azimuth). For
each segment, the color with the largest radius from the color
space or gamut center is stored. These points can then be trian-
gulated by taking advantage of the inherent neighbor structure of
the segments.

There are, however, some deficiencies to this approach.
First, the higher the number of segments, the higher the probility
of empty segments. Since the triangulation of the final surface is
based upon the regularity of the chosen points, there has to be a
point in every segment. Thus, an intricate interpolation algorithm
has to be used. Secondly, the segment maxima method results in
a gamut where the surface is sampled more densely near the top
and the bottom due to the uniform quantisation of the spherical

Figure 2. The objects used as a basis for sphere tesselation: Icosahedron,

tetrahedron, and octahedron

angles. Lastly, there is no guarantee that all of the data points are
inside the resulting closed surface. Despite these shortcomings,
segment maxima is still much in use.

USV
The USV algorithm was developed by Bakke et al. [6] in or-

der to solve two of the three problems of the segment maxima al-
gorithm: the inhomogeneity of the sampling points and the need
to create artificial points by interpolation. It is a well known fact
that tessellation of a sphere by uniform subdivision of spherical
coordinates results in a surface with highly varying size of sur-
face segments. Alternative solutions [12] are often used when
working with sphere appropximations, such as when drawing a
3D sphere approximated by polygons.

The USV method computes the gamut boundary from any
arbitrary selection of data points in CIELAB or a similar color
space, given that a sufficiently dense sampling of the entire gamut
volume has been performed. First, a triangle-based approxima-
tion of a sphere is computed using a well-known tesselation tech-
nique. A basic triangle-tesselated geometric object is generated,
e.g, a tetrahedron, octahedron or icosahedron (Figure 2). A sub-
division of the surface triangles is performed as shown in Figure
3. Each triangle is subdivided into 4 smaller triangles recursively,
until the desired number of triangles is achieved. The resulting
vertices are then projected onto a spherical surface, giving a close
approximation of a sphere with a more uniform triangle size than
uniform subdivision of spherical coordinates. Figure 4 shows the
result of running the USV algorithm with approximately 10 000
segments on the reference gamut from Figure 1.

Upon construction of the tesselated sphere, a data structure
is generated that includes the neighborhood connectivity infor-
mation for the triangles. Each surface triangle defines a segment
around the chosen center, represented by the tetrahedron given
by the triangle vertices and the center point.

Figure 5 shows a surface triangle as solid lines, while the
tetrahedron defined by the triangle and the center point is illus-
trated using dashed lines. Each pair of vertices P0, P1, and P2
define an edge of the triangle. The tetrahedron is surrounded by
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Figure 3. The subdivision of a triangle

Figure 4. The result of running the USV algorithm on the reference gamut

from Figure 1 with approximately 10 000 segments.

Figure 5. The surface triangle T0 and the center point C. The center point

and each pair of the triangle vertices define planes used to check whether

a point is inside the segment.

three other tetrahedra, each sharing a different edge of the trian-
gle.

The data points belonging to the gamut are then processed
by finding the enclosing segment for each point. In order to de-
termine which segment encloses each data point, a walking algo-
rithm was used. When the enclosing segment has been located
for each point, the length of the radius from the center point to
the data point is calculated. Similarly to the segment maxima
method, only the single maxima point per segment having the
largest radius from the center point is kept for the next part of the
algorithm.

When all the input points have been processed, some of
the segments may be empty. Instead of inserting artificial inter-
polated points like the segment maximat method, USV directly
utilises the modified convex hull algorithm with γ = 0.05 on the
maxima points from the non-empty segments to create the final
surface triangles constituting the gamut boundary. This small
value of γ is chosen to ensure that all the points are included in
the surface. One could correctly argue that γ = 0 would be the
best choice to achieve this. However, experience has shown that
this choice can lead to a suboptimal triangle subdivisions in some
special cases.

Mesh Decimation
Simplification of polygonal surfaces is a commonly used

technique in computer graphics. Typically, an initial model has
been constructed using a large amount of triangles. The chal-
lenge is then to reduce the number of triangles without introduc-
ing large visual or computational errors to the simplified model.
A large number of techniques have been proposed [7, 13] for per-
forming this task. The complexity of the algorithms differs, and
they also result in approximations that have varying accuracy.

Garland and Heckbert introduced a technique for surface
simplification in [14]. Their approach based on the quadrics error
metrics has been show to perform quite well on objects without
open boundaries [7], which should make it suitable for use on
gamut surfaces. In addition, the algorithm is fast enough [15] to
make it suitable for interactive construction of gamuts.

Method
We propose that a mesh decimation algorithm can be used to

construct simplified gamut surfaces that maintain a higher accu-
racy than comparable algorithms. While the USV algorithm uses
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a pre-processing step based on segmentation of the color space
to reduce the number of input points to the surface construction
algorithm, our new method utilizes all input points to construct
the initial surface. Then, a mesh decimation algorithm is used to
reduce the complexity of the generated surface.

Generally, the recommended procedure for generating a
gamut boundary based on a device model and a point-based
method for gamut boundary determination is to generate a high
number of simulated data points using the model to impose a
gamut constraint on the point position. We start by using the
modified convex hull algorithm to construct a very detailed sur-
face that consists of many very small triangles. We ensure that
the data structure contains neighbor information in order to be
able to simplify the surface.

For our experiment, we perform a preprocessing step to
make the surface follow gamut concavities as described by Bal-
asubramanian and Dalal [5], using γ = 0.2 as recommended by
[4]. Figure 1 shows one of the initial gamuts used in our exper-
iment. The very detailed gamut follows the inherent surface of
the device data closely, but the large amount of triangles make it
less suitable for both visualization and further computations.

Although we chose the modified convex hull algorithm to
generate the detailed gamut surface, we could have chosen any
algorithm that produces a surface of triangles. The mesh simplif-
cation algorithm can be used to simplify any triangulated surface
as long as the data structure contains connectivity information
and does not duplicate vertices. However, it is clearly an advan-
tage to have an accurate gamut surface as the starting point for
the simplification process, and the modified convex hull has been
shown [4] to give the best approximation of the gamut.

The mesh simplification algorithm proposed by Garland and
Heckbert [14] based on quadrics error metrics is then used to re-
duce the number of triangles in the surface. By collapsing an
edge to a point and removing the two triangles that shared the
edge, the surface is iteratively simplified until the desired level
of detail is reached. This step is illustrated in Figure 6. The con-
traction (v1,v2) → v is done by replacing all references to the
vertices v1 and v2 with v, where the position of the new vertex v
is calculated as described later in this section. The list of trian-
gles is also changed by discarding the two shaded triangles and
updating the neighbor information.

The edge that should be contracted must be chosen for each
iteration of the algorithm. This is done efficiently by maintaining
a heap structure, using a calculated cost for each edge as the key
of the heap. The cost represents the error introduced by contract-
ing the edge. By using a heap one can then always perform the
edge contraction that the cost function reports should introduce
the least amount of error.

The quality of the algorithm depends on the choice of cost
function, which in this case is a quadric error metric. The algo-
rithm of Garland and Heckbert is based on the metric introduced
by Ronfard and Rossignac [16], that can be understood to main-
tain a set of planes for each vertex on the surface. The error
contribution of a vertex that has been moved to a new position is
defined to be the sum of the squared distances from the vertex to
its associated planes.

Initially, each vertex conceptually contains a list of the
planes of all the triangles that are incident to the vertex. The
error of the vertex starts out as being equal to 0, since the vertex
is contained in all of its planes. The list of planes is then updated
as edges are contracted, each contraction resulting in a vertex that
has a list of planes equal to the union of the two sets of planes
belonging to v1 and v2.

Figure 6. The polygonal simplification algorithn iteratively performs a ba-

sic operation known as edge contraction. The edge connecting the two

vertices (v1, v2) is replaced with a single point. The process eliminates the

two shaded triangles and the connectivity of the neighboring triangles is

updated
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The calculation of these sets can be done implicitly by rep-
resenting the error as a quadric Q. Garland and Heckbert start by
defining the plane equation of a face, nT v0 + d = 0, where n is
the unit normal of the plane, v0 is any point in the plane, and d is
a constant. The squared distance D2 from this plane to the vertex
v can then be rewritten as

D2 = (nT v+d)2

= (vT n+d)(nT v+d)

= vT (nnT )v+2dnT v+d2

(1)

D2 can then be represented as the quadric Q

Q = (A,b,c) = (nnT ,dn,d2) (2)

Q(v) = vT Av+2bT v+c (3)

The sum of errors for a set of planes as well as the union
caused by edge contraction can be found by simple addition of
two quadrics, defined as a componentwise operation. By using
addition to represent the union of two sets of planes, some inac-
cuarcy is introduced due to several planes possibly being part of
both sets. In addition, we must check the surface at each step to
make sure that it does not fold over on itself [14].

We find the edge contraction which introduces the least
amount of error to the surface by using the addition of quadrics.
However, we still need to determine the position of the new ver-
tex. Garland and Heckbert find the optimal placement of the ver-
tex by minimizing the quadric of the vertex v. They define the
new position as v = −A−1b if the minimization of the error re-
sults in a single point. If A is not invertible one of the end points
of the edge is chosen as the new vertex position.

When the number of triangles in the structure has reached
the desired level of detail, the algorithm stops the simplification
process.

The ability to quickly and efficiently change the level of
detail is especially useful when used for constructing gamuts in
interactive tools, e.g., [17]. The simplification algorithm that we
have evaluated is comparatively fast [7] while producing accurate
surface approximations. We also propose that the algorithm can
be used interactively using, e.g., a slider to change the number of
triangles in the surface. By extending the original simplification
algorithm to maintain a list of the changes that are done while
simplifying the surface, the detail can easily be increased again
after the simplification has been executed.

For undoing the simplifaction that has been applied to the
surface, some information about the changes made at each iter-
ation of the algorithm must be stored. We record the changes
made to the vertices and the connectivity of the triangles, and
instead of deleting redundant vertices and triangles we simply
mark them as no longer being needed. When the user requests an
increased level of detail, the simplification can then be reverted
back to a larger number of triangles by performing the inverse
operations in this list.

Results and Discussion
We have utilized the method previously described in [4] to

compare this gamut boundary determination method against the
USV method. The USV method has previously been shown [6]
to perform better than the commonly used segment maxima al-
gorithm, resulting in better accuracy for a given level of detail
as determined by the number of segments used. We construct a
reference gamut boundary by first using a device model for five
different devices to generate surface points, and then utilize the
modified convex hull algorithm to generate the boundaries.
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Figure 8. The average relative gamut mismatch of our proposed method

compared to the USV algorithm. The results show that our new algorithm

performs better than USV for an equal number of triangles, and a high de-

gree of accuracy can be achieved using a low number of triangles.

The reference gamut boundaries consist of many small tri-
angles of densely sampled surface points. We then use USV and
our proposed algorithm to construct gamut boundaries that are
made up of a much smaller number of triangles.

We compare these gamut boundaries to the reference and
compute a relative volume mismatch using a voxel technique [4].
The average mismatch from these devices is plotted in Figure
8, where the average relative gamut mismatch of surfaces con-
structed using different numbers of triangles are shown. Our new
algorithm performs better than USV for all tested choices of de-
tail. The difference is particularly large for a small number of
triangles, and our new algorithm requires very few triangles to
give a highly accurate representation of the gamut boundary. As
the number of triangles increases, the surfaces of both algorithms
approaches that of our reference gamut.

We can see 7 that the simplification maintains the sharp
edges of the gamut quite well even when the number of trian-
gles is quite low. The algorithm removes the almost coplanar
triangles along the sides of the gamut, joining the small trian-
gles and generating larger surface parts. The obvious alternative
to simplifying a detailed surface is to generate a smaller num-
ber of points that are used as input to the surface construction
algorithm. However, we can see that this would result in a less
optimal surface.

There is no straightforward method that can be used to de-
cide the optimal distribution of such points, leaving a uniform
spacing of the points in the device color space as the logical
starting point. This results in a gamut surface where the sides
of the gamut consist of approximately the same number of points
and triangles. This is clearly suboptimal, since sides where the
points are nearly coplanar can be described using less triangles
than sides that are more convex or concave.

The mesh simplification produces a more optimal selection
of triangles and point distribution, since the cost function ensures
that it generally will combine the triangles that are more coplanar
before the others. The surfaces that it generates are therefore
more accurate for a given number of triangles.

Conclusions
We have presented a new method for generating accurate

gamut boundaries with a small number of surface triangles. Our
method has been tested on data from five different devices, and
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(a) A gamut surface consisting of 10000 triangles (b) A gamut surface consisting of 1000 triangles

(c) A gamut surface consisting of 500 triangles (d) A gamut surface consisting of 100 triangles

(e) A gamut surface consisting of 50 triangles (f) A gamut surface consisting of 10 triangles

Figure 7. An example of a gamut surface which is constructed using our algorithm. The initial surface in Figure 1, which is constructed using modified

convex hull, consists of a high number of triangles. The structure is simplified by collapsing edges to reduce the number of triangles.
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results show that it performs better than an existing state-of-the-
art algorithm in terms of accuracy for a given number of trian-
gles. Our new algorithm produces visually pleasing gamut sur-
faces, and the edge contraction of the mesh decimation is per-
formed in a sequence that can be seen to maintain the edges of
the gamut.

In addition to increased accuracy, the proposed algorithm
has the advantage that it can produce surfaces using an arbitrary
number of triangles. For every iteration, the number of triangles
is reduced by two. Given a desired number of triangles for the
boundary, the number of triangles generated will therefore devi-
ate from this by at most 1 triangle. By comparison, the USV al-
gorithm has a limited selection of segments due to the technique
used for subdivision of the triangles.
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[11] Ján Morovič and M. R. Luo. Gamut mapping algorithms based on
psychophysical experiment. In Proceedings of IS&T and SID’s 5th
Color Imaging Conference: Color Science, Systems and Applica-
tions, pages 44–49, Scottsdale, Arizona, 1997.

[12] John R. Baumgardner and Paul O. Frederickson. Icosahedral dis-
cretization of the two-sphere. SIAM Journal on Numerical Analy-
sis, 22(6):1107–1115, 1985.

[13] David P. Luebke. A developer’s survey of polygonal simplification
algorithms. IEEE Computer Graphics and Applications, 21(3):24–
35, 2001.

[14] Michael Garland and Paul S. Heckbert. Surface simplification us-
ing quadric error metrics. In SIGGRAPH ’97: Proceedings of
the 24th annual conference on Computer graphics and interactive

techniques, pages 209–216. ACM Press/Addison-Wesley Publish-
ing Co., 1997.

[15] Muhammad Hussain, Yoshihiro Okada, and Koichi Niijima. Effi-
cient and feature-preserving triangular mesh decimation. In Jour-
nal of WSCG, pages 167–174, 2004.
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Anders Rindal. Visualization and interactive manipulation of color
gamuts. In Proceedings of IS&T and SID’s 10th Color Imaging
Conference: Color Science and Engineering: Systems, Technolo-
gies, Applications, pages 250–255, Scottsdale, Arizona, 2002.

CGIV 2010 Final Program and Proceedings 465




