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Abstract

HDR image formation and display has been an argument
of extreme interest even when digital cameras were not yet con-
sumer products. While recent research in both fields has seen
very interesting works, none is really revolutionary, since what
goes on behind the scene has been left basically unchanged. In
the image formation field in particular, a lot of energy has been
spent so to solve the problems that arise when taking multiple ex-
posures: illumination change, camera shake and in-scene move-
ment. In this paper we approach HDR image formation from
a different perspective, which tries to solve in one move all the
mentioned problems. More specifically, we propose a method
that is able to estimate missing exposures for HDR image for-
mation starting from only one under-exposed shot. Estimation
is done through artificial neural networks: the development of
a mathematical model is a highly desirable, but time consuming
task. The results are are very interesting, although not perfect,
and suggest that further research might lead to a suitable solu-
tion.

Introduction

Since the beginning of the era of high end digital cameras,
camera producers strived to give photographers the best working
environment possible: they provide advanced software solutions
for image manipulation, and, most important, they also allow ac-
cess to the so called RAW files. Such files, which do not yet have
a common format for every producer (although a standard has
been proposed by Adobe), contain relatively unprocessed data,
possibly taken right after the Analog-to-Digital (AD) conversion
process. Consequently, RAW files contain values that reflect the
Color Filter Array (CFA) format chosen by the manufacturer, and
they also have the same representation precision granted by the
AD Converter (ADC). For example, the ADCs in the Canon 10D
used in this work have a precision of 12 bits.

These characteristics of RAW files have always been
deemed of high importance by photographers, since they allow to
perform certain tasks that are impossible with 8-bit, color com-
pressed images. One of such tasks inspired the present work: the
ability to change the exposure in order to recover detail present in
either the highlight or the shadow regions of the image, which are
usually clipped by the tone compression curves of the camera.

Also, in this work we are going to challenge the following
sentence, found in the introduction of the High Dynamic Range
(HDR) imaging reference text at the time of writing [10]: “...
10 to 12 bits of linear data affords about the same precision as
an 8-bit gamma-compressed format, and may therefore still be
considered LDR”. While this may be true when only consid-
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ering the numerical precision of the representation, 8-bit Low
Dynamic Range (LDR) images produced by image acquisition
devices also undergo the process known as Tone Compression,
usually performed by means of S-shaped functions. This means
that RAW data from a camera is compressed twice, hence it is
evident how a LDR image does not have the same expressive
power as RAW data (and the reason why RAW files are so val-
ued by photographers)[1]. The importance of this consideration
is going to grow as in camera ADCs grow in precision (14-bit
and over), and sensors gain wider and wider dynamic ranges..

In the present work, then, we are going to demonstrate how
the higher expressive power granted by RAW image files can be
exploited in the field of HDR imaging. More specifically we
will show how, starting from a single exposure, we can obtain a
reasonable approximation of a series of three exposures taken at
with a bracketing interval of 2 stops, which can in turn be used
to generate HDR content. This work is meant to be a proof of
concept to be used as a base for further research.

As far as our knowledge is concerned, our approach is com-
pletely different from anything present in literature. Even recent
developments on HDR video sensors [9], still need to two differ-
ent exposures to obtain the final image. An added benefit of our
proposal is that we do not need to worry about image registration
and ghosting [6], which arise from differences in the position of
the camera and/or subjects when taking multiple exposures (al-
though the former can be exploited to perform super-resolution
as in [5]).

The paper is organized as follows. We will start by describ-
ing digital camera sensors in general, then analyze in detail the
sensor of the Canon 10D, the camera that was used for the tests.
Next we explain the details of the proposed method for HDR im-
age contents estimation. The subsequent section gives a descrip-
tion of the experiments along with the results, and following we
will propose a possible enhancement to the method. The last sec-
tion is dedicated to the conclusions, and it sums up this work with
concluding remarks and prospective work.

If not otherwise specified when naming an image in this
work, we refer to a RAW image, i.e. a matrix of monochromatic
values representing the CFA components.

Camera sensor analysis

On the sole premise of theory, it is a common thought that,
given a well calibrated silicon based sensor (CCD or CMOS), it
is supposed to have a linear input/output response [7]. In other
words, if we increase the input intensity by two times, so should
the output (within the limits of the sensor itself).

Our first task is to verify such belief: if the assumption
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Figure 1. Each row shows the Red, Green-Red, Blue and Green-Blue CFA
components for a couple of exposures 1 stop apart. The x-axis represents
the input intensity and the y-axis the average ratio for that level.

is verified, the ratio between two exposures of the same scene,
taken with a 1 EV latitude difference (double the amount of in-
coming light), should be constant for most of the output range.

The tests were carried out with a Canon 10D DSLR (6
MPixel, CMOS sensor). We would like to stress that changing
the sensor or camera model would require to perform again all
of the test in this paper, not to mention network training. The
different performance could also lead to different considerations
regarding the best starting exposure for the estimation process.

In Fig. 1 we are showing, for each of the Bayer CFA chan-
nels, the average ratio between couples of exposures from one of
our test scenes, each 1 stop apart. ISO and aperture were kept
fixed, while we manually increased the exposure time to obtain
the desired latitude difference.

There are some interesting facts that can be distinguished
by observing the plot

1. Even using RAW files, increasing the exposure by 1 stop
does not produce (on average) a doubling of the output in-
tensity values;

2. It seems that all the channels have approximately the same
response;

3. After a certain threshold, the ratio becomes dependent on
the observed variable only.

We will further examine the third point in order to under-
stand how it could influence decisions regarding our goal, which
is to obtain an HDR image from a single exposure.

Low-Medium signal intensity

Any kind of interference on a signal is usually regarded as
unwanted noise by most engineers. When working with image
acquisition devices, however, part of the “noise” is built in the
system itself: the color sensitivity curves for the different com-
ponents of the CFA are usually overlapping to some extent.

Furthermore, a phenomenon known as channel cross-talk
increases the relationship between adjacent sensing elements.
Channel cross-talk is due to stray rays of light, and, although
it can be greatly reduced by careful lens design and application
of micro-lenses at each of the photosites, it cannot be completely
eliminated.

Both of the aforementioned facts explain the high instability
of the average ratio with the respect to the channel output level:
each photosite output does not depend on the observed signal
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only. Since such dependency between CFA channels has been
effectively exploited to perform demosaicking, it is our opinion
that it might be useful for our objective as well.

High signal intensity

We have already stated how, from a certain intensity level
on, the ratio becomes free of any kind of noise. This is probably
due to the sensors reaching its limits near the saturation region,
and the threshold seems to be similar for all the CFA compo-
nents. Hence, there is really no point in trying to estimate a da-
tum which shows no variability across either CFA components,
image coordinates or exposure, for it is not dependent on scene
contents anymore: it’s easy, but most likely meaningless. This is
also the reason that lead us to start the estimation process from
fast exposures, although these are more affected by photon shot
noise.

Proposed method

Conventional methods for the generation of HDR images
require access to different exposures of the same scene. Usually
the different exposures are obtained in standard ways, such as
a DSLR camera shooting in rapid succession, or a specially de-
vised sensor. Independently of the acquisition method, though,
different exposures my show a high variability due to illumina-
tion changes, camera shake or movement, and movement in the
scene. In order overcome the insurgence of such differences,
we propose an approximation method based on neural networks,
instead of taking repeated shots with different camera settings.
This may not be the ideal solution, but we will show that the
error levels are quite contained even when estimating a 4 stops
difference.

Our method is illustrated in Fig. 3 and can be summarized
as

1. Take the first shot: IAE—2,
2. Estimate JAE.
3. Estimate I°E*2 from the estimate of IAE.

where we indicate with AE the camera measured exposure, and
with I* the image corresponding the the input scene at exposure
x. Also a rough algorithmic description for steps 2 and 3 is given
in Alg. 1.

Our systems requires 8 distinct neural networks: one for
each (CFA channel, exposure difference) couple.

Each network takes as inputs 4 values and produces 1 output
value. The inputs are the intensity value for the pixel at position
(i,) in the CFA, the two horizontally adjacent values, and the
mean of the CFA channel of which the pixel I*(i, j) is part. The
output is the estimated value of I**2(i, j). The reason why we
pass as input three row-adjacent pixels to the network is that most
imaging sensors use the area available to photosites and read-out
electronics in such a way that it dictates a higher cross-talk effect
in the horizontal direction [11].

In order to establish the network structure we proceeded us-
ing cascade training to obtain an estimate of the structure itself.
The final network structure is shown in Fig. 4. The activation
function for all the layers except the output neuron is the logistic
function, and the input is normalized to the [0, 1] range accord-
ing to the maximum output of the ADC of the camera (4096 for a
12-bit ADC). The output neuron activation function is the linear
function.

We trained the 8 neural networks necessary to recursively
estimate the full 4 stop difference from the initial shot: the train-
ing database (Fig. 6) is made of three indoor shots taken while
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Figure 2.  Flowchart of the proposed method. The part of the graph en-
closed in the red line is unique to our approach.
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Figure 3. Intuitive view of the proposed method. I*E~2 s the input image.
Images are shown in color for ease of visualization, but in the process they
contain RAW data.

facing a window, a typical HDR situation, while trying to obtain
a sufficient amount of color variety between the shots. We then
chose 350k pixels at random from the training set and obtained
convergence at MSE < 0.0001.

While the database is definitely undersized for extensive
training, we point out again that this work shall only serve as
a launchpad for future research.

Trying to establish the limits of our work, we also decided
to train a set of neural networks for each of the following con-
ditions: RAW camera output with white balance and channel
stretching, and RAW output with white balance, channel stretch-
ing and denoising. In this case the normalization factor becomes
216 i e. the maximum integer representable in a 16-bit TIFF file
(the format of choice).

The denoising method we used is that described in [4],
while the demosaicing algorithm we implemented is the one of
[8]. The white balance algorithm is implemented in the open
source utility dcraw [2], which features black level estimation
and subtraction, and camera white-balance settings readout.

Experiments

After the network training phase, we performed tests on a
two set of exposures: one indoor and one outdoor. The test im-
ages are shown in Fig. 7 and the results are shown graphically in
Fig. 8.
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Figure 4. Artificial Neural Network structure. The coloring scheme simu-
lates the application to a Red pixel (hence the green neighbors).

It appears evident how, on the first test image (indoor), the
neural networks do not struggle too much estimating the first 2
stop difference. However, the error accumulated in the first step
leads to a much larger error in the second estimate. Yet such error
is only around 5% on average.

The second test image proves a more challenging: it was
shot outdoors and the networks were not trained on average in-
tensity levels such as those present in the last shot of the se-
ries. Nonetheless the error is quite contained on the first estimate
(roughly on the same levels as for the indoor image), dipping
below 15% on the negative scale for the second step.

Many may point out that such an error is way too big for
any kind of non academic purposes, and we totally agree, yet it is
small enough to serve as an indicator. More specifically it points
at the necessity of further work on the topic, and even hints at the
chance of formulating a mathematical model powerful enough to
supersede the use of neural networks.

In order to explore as much of the problem space as pos-
sible we have taken in consideration the output of networks
trained data that was generated by applying white balance, chan-
nel stretching and denoising.The results are shown in Fig. 10. It
is evident how the networks behavior changes drastically, yield-
ing lower average errors both on the positive and negative differ-
ence scale.

Another example of the very good performance obtainable
by the networks trained on the modified data is given in Fig. 9,
where we can compare the results of the tone mapping operator
proposed by Drago et. al [3] applied to the original sequence
of RAW files and the sequence generated using the described
method.

Discussion and future work

Reasoning on the average error shown in Sec. , we hereby
propose a modification to the method that should, in theory,
lower the error on the estimation of the latitude farthest from the
real shot. A schematic of the modified method is shown in Fig.
5.

While estimating a —2 stops difference from any exposure
might be too much, given the characteristics of the 10D sensor,
we believe that we could safely stop down by one stop using
another group of networks. The process then becomes:

1. Take the first shot: JAE—1,
2. Estimate exposures I*E~2 and IE (£1 stop).
3. Estimate IAE+2 from the estimate of IAE.

The AE estimate should be less noisy than the before, since
there is a latitude difference of only one stop, and consequently
the average error for the second estimate should be lower as well.
On the other hand we add some noise in the darkest exposure,
although it should be consistently lower than that in the first es-
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Figure 5. Proposed improvement. Starting from I*E~!, we first estimate a
+1 stop difference. Then we estimate I***2 from I*E as previously seen.

timate for the method originally proposed. Noise should not also
be considered an excessive problem, given the excellent denois-
ing techniques that have been developed through the years.

Experiments with the new estimation chain and an extended
database are currently being performed.

Conclusions

While this may be only a first step, it is a very important one:
we have hereby demonstrated how it is possible to synthesize
HDR images from a single shot by estimating the missing data
using a set of Artificial Neural Networks. This gets rid of all
the problems related to HDR image formation (especially image
registration and ghosting), although it introduces the unknown
variable of the estimation itself. Since the proposed approach
works on a lower level than tone mapping operators, it can be
easily combined with any of the methods available. It could also
be employed to produce HDR video footage offline, once the
method becomes stable enough.

The current estimation errors for a generic image are still
too big for real-world scenarios, as can be seen from the exper-
iments we run. Yet, those same experiments yielded some as-
tonishing results which push us into believe that further work is
needed in this same direction, and we expect the evolution of our
approach to be of practical utility.

Also, a consideration worth doing is that, if the task can be
accomplished by using Neural Networks, it is highly likely that
the same could be achievable by means of a “standard” frame-
work (given a reasonably accurate mathematical model of the
image formation process) which should be easier to implement
on imaging hardware.
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(a) Camera AE -2 stops. (b) Camera AE. (c) Camera AE +2 stops.

(d

(9] (h) @
Figure 6. Image database for ANN training. Different exposures of the same scene are shown on the same row: (a, b, c), then (d, e, f) and (g, h, i). All the
frames have been taken with F16 aperture and ISO 100 sensibility.

Algorithm 1 In the listing, cfa(i, j) is a function that outputs the CFA channel that contains at I(i, j), its output is defined as ¢ €
{R,GR,B,GB}. I. indicates all the pixels in I that are part of the ¢ channel, while ANN, is the neural network trained to estimate the
next exposure for the ¢ channel.
w < width([)
h < height()
fori=2tow—1do
for j=2toh—1do
a+I(i—1,))
x«1(i,))
b« 1I(i+1,))
¢ < cfa(i, j)
avg —<I. >
O(i, j) <~ ANN¢(a,x,b,avg)
end for
end for
Replace the outer border by repeating.
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(a) Test scene 1 (indoor). (b) Test scene 2 (outdoor).

Figure 7. Test scenes shown at the exposure measured by the camera.
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(a) Indoor test scene. First estimate error. (b) Indoor test scene. Second estimate error.
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(c) Outdoor test scene. First estimate error. (d) Outdoor test scene. Second estimate error.

Figure 8.  False color plots of the estimation errors (scale within +10% for the first estimate and +20% for the second). Over-estimation is shown in blue,
under-estimation in red. The average positive and negative errors are indicated with Avg+ and Avg-, respectively.
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(a) Outdoor test scene. First estimate error using white bal- (b) Outdoor test scene. Second estimate error using white bal-
anced images for HDR estimation. anced images for HDR estimation.

Figure 9. False color plots of the estimation errors (scale within +10%) using networks trained on white-balanced, channel stretched images. The images
should be read in the same way as Fig. 10.

(a) First database image tonemapped from RAW generated (b) First database image tonemapped from estimated HDR.
HDR.
Figure 10. Example of tone mapping from the original RAW files compared to the tone mapping produced by one original exposure and two estimates.
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