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Abstract
In this paper we discuss the role of curvature in the context

of color spaces. Curvature is a differential geometric property of
color spaces that has attracted less attention than other proper-
ties like the metric or geodesics. In this paper we argue that the
curvature of a color space is important since curvature proper-
ties are essential in the construction of color coordinate systems.
Only color spaces with negative or zero curvature everywhere al-
low the construction of Munsell-like coordinates with geodesics,
shortest paths between two colors, that never intersect. In differ-
ential geometry such coordinate systems are known as Riemann
coordinates and they are generalizations of the well-known polar
coordinates.

We investigate the properties of two measurement sets of
just-noticeable-difference (jnd) ellipses and color coordinate
systems constructed from them. We illustrate the role of curva-
ture by investigating Riemann normal coordinates in CIELUV
and CIELAB spaces. An algorithsm is also shown to build multi-
patch Riemann coordinates for spaces with the positive curva-
ture.

Introduction
The fact that a color space is a Riemann space, or a curved

space, rather than a Euclidean space was first understood by
Helmholtz, whose well known line element is the first effort in
vision research to define a Riemann metric tensor for the color
space characterizing human color vision. An historical account
of related studies of color spaces and their foundations in Rie-
mann geometry can be found in [14] and [13].

A major difference between a curved space and a Euclidean
space is that cartesian coordinates are only meaningful in lo-
cal neighborhoods of points. Therefore it is usually very hard
to characterize quantitative properties and relationships among
whole distributions of color stimuli. An example is the difficulty
in investigating large color differences.

Riemannian geometry provides powerful tools with which
one can use to construct coordinate systems in a color space that
are similar to a coordinate system in a Euclidean space. In partic-
ular, the color-difference between two color stimuli can be mea-
sured by the geodesic distance between them. As an analogy to
the Munsell system, the surfaces of constant brightness corre-
spond to the surfaces with constant geodesic distance from the
origin, the lines of constant hues are geodesics starting from the
achromatic origin on the constant brightness surface and the lines
of constant chroma are the closed curves with constant geodesic
distance from the origin on the constant brightness surface (for
more information see [14]).

This Munsell-like coordinate system in a color space is
known as the Riemann normal coordinate system which is a gen-

eralization of the polar system in a Euclidean space. This co-
ordinate system has many favorable properties and plays an im-
portant role in various applications. Examples are the construc-
tion of isometry or color-difference-preserving maps for uniform
color spaces, color-weak correction and color reproduction (see
[4], [5] and [10] for some examples).

It would be of great advantage if one could construct such
a Riemann normal coordinate system in all color spaces, but this
is unfortunately not always possible. In fact, the existence of
such a coordinate system depends on one of the most important
properties of a color space as a Riemann manifold, the Riemann
curvature. The Riemann curvature tensor describes the bending
of the space, that is how much and in what way the Riemann
space deviates from a flat space.

It is known as an invariant of a Riemann space under isome-
tries or distance preserving maps. Therefore the curvature of a
color space is very important for both theoretical and practical
reasons, especially when one transforms one color space into an-
other. A simple first test to check color-difference preservation
is to see if the curvature is preserved. e.g. since a uniform color
space is isometrc to the Euclidean space, the curvature in a uni-
form color space should be zero everywhere.

However, although the metric is well studied in colorimetry,
the curvature issue seems to have been regarded as a purely theo-
retical subject and has not attracted sufficient attention until now.
An interesting illustration of the importance of curvature is the
conclusion that a chromaticity plane cannot be embedded into
2D Euclidean space because of its nonzero curvature (see [12]
and [9]). Curvature is also used in [14] to show that the Stiles
line element model is not compatible with MacAdam’s ellipses
since they have different signs in the xy chromaticity diagram.

In fact, the discrepancy between the Stiles line element and
the MacAdam ellipses has much more serious implications than
expected. In particular, the curvature plays such an important
role in a color space that it is vital for the existence of Riemann
normal coordinates.

Radiating straight lines emerging from the origin in a Eu-
clidean space will never intersect each other but in a general Rie-
mann space geodesics may intersect each other. A well-known
example is the sphere where the great-circles are the geodesics
and infinitely many of them intersect at the two poles of the
sphere. In that case we may not be able to obtain well defined
coordinates and lines of constant hue or constant chroma from
geodesics. Thus the possibility to draw geodesics through the
whole chromaticity diagram means that the later can be covered
by a single Riemann normal coordinate neighborhood, which re-
quires that the whole diagram has negative or zero curvature.

Therefore it is not always possible to have a global Munsell-
like or Riemann normal coordinate system for a color space. In
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other words, usually such a Riemann normal coordinate system
will only exists locally, i.e., at certain neighborhood of a point in
the space. Consequently, one may be able to uniformize, or to
build a color-difference-preserving map, around a neighborhood
of every point in such a color space using the local Riemann nor-
mal coordinates, but usually this can not be extended to a global
uniformization or color-difference preservation.

In this paper we will show how curvature effects the prop-
erties of the color spaces. The curvatures of two sets of measure-
ments of threshold ellipses will be calculated for the CIELUV
and CIELAB spaces. We will present the intersection problem
of geodesics and show that the problem originates in the positive
curvature. In such a case, the Riemann normal coordinate system
does not exists. We show that by applying smoothing one can re-
duce fluctuation of the curvature, but it also changes the shapes of
jnd ellipses, and therefore we need a better interpolation strategy.

Finally, we also show that in a case where we have a positive
curvature that we can not circumvent, we will use the compari-
son theory of Riemann manifolds to find the injective radius or
the minimal distance before the geodesics intersect. Using this
information, one is able to build a multi-patch geodesics coordi-
nate system for the whole color space. Moreover, a combination
of smoothing with the multi-patch strategy is also discussed in
order to reduce integral error and for fast implementation using
parallel processing.

Curvature of color spaces
We know that the squared length of a vector in a Euclidean

space is measured by the self-inner product of the vector. An n-D
Riemann space is a space in which the distance can be only mea-
sured locally, or the length of a very small vector (dx1, ...,dxn)′
around a point x = (x1, ...,xn) can be measured using an extended
inner product as follows or a quadratic form defined by an n×n
matrix G(x) = (gi j(x)) called a metric tensor.[2]

ds2 = ∑
i

gi jdxidx j

This is called a line element in color science. In a color space,
the Riemann metric is defined by the jnd ellipses.

On a Riemann space (Rn,G) with the metric tensor G, an
extension of derivative in Euclidean space known as covariant
derivative ∇ is defined in the following way:

∇∂i
∂ j = ∑

k
Γk

i j∂k, (1)

where the ∂i := ∂
∂xi , Γk

i j are known as Christoffel symbols. It is
known that there is a unique covariant derivative called compati-
ble with the metric G, where the Christoffel symbol is calculated
from G as follows.[2]

Γk
i j =

1
2 ∑

l
gkl

(
∂gl j

∂xi +
∂gil

∂x j −
∂gi j

∂xl

)
(2)

where ”gkl” are entries of the inverse matrix of G. It is known
that the curvedness of a surface in 3D Euclidean space can be
described by its Gauss or mean curvatures. The curvedness of a
Riemann space is much harder to describe since there is usually
no or need a high dimensional surrounding space from which
one can observe this curvedness from outside. Fortunately, the
Riemann curvature tensor which characterizes the curvedness of

the space can be calculated from the metric tensor G [6]:

Ri jkl =
1
2

(
∂ 2gil

∂x j∂xk +
∂ 2g jk

∂xi∂xl −
∂ 2g jl

∂xi∂xk − ∂ 2gik

∂x j∂xl

)

+ ∑
m,n

gmn

(
Γm

jkΓn
il −Γm

jlΓ
n
ik

)
(3)

In 2D spaces, due to the symmetry of the Riemann curvature
tensor, there is only one nonzero and independent entry

R1212 =
1
2

(
∂ 2g12

∂x2∂x1 +
∂ 2g21

∂x1∂x2 − ∂ 2g22

∂x1∂x1 − ∂ 2g11

∂x2∂x2

)

+
2

∑
m,n=1

gmn (Γm
21Γn

12 −Γm
22Γn

11) (4)

which is equal to the Gaussian curvature of the embedding sur-
face of the 2D Riemann space into a 3D Euclidean space.

According to the comparison theory of Riemann manifolds
e.g. [3], one knows that if the curvature of a 2D Riemann mani-
fold is negative everywhere, then the geodesics will never inter-
sect each other or the exponential map is a diffeomorphism. Such
a Riemann manifold is called a Cartan-Hadamard manifold. This
means that for the whole color space with negative or zero cur-
vature everywhere, there is a global Riemann normal coordinate
system which can be regarded as an extended Munsell system
or a generalization of the polar coordinate system in a Euclidean
space. This theory extends also to higher dimensional space but
for simplicity we only consider the 2D case hereafter.

However, if the curvature is positive then the geodesics will
intersect somewhere, and therefore the exponential map will not
be an homeomorphism. Hence there does not exist a single
global Riemann normal coordinates for the whole color space.

Curvature in CIELUV space
It is known that the MacAdam’s ellipses on the CIE xy chro-

maticity diagram have both positive and negative curvature [14].
Here we consider the curvature on the L = 50 plane in the

CIELUV space. We first investigate the geometry defined by
the 25 ellipses measured by MacAdam. We interpolated the
long axes, the short axes and the angles of the just-noticeable-
difference (jnd) ellipses in the CIELUV space using the Akima
algorithm [1]. The result is shown for the convex hull of the
data points in Fig. 1. It can be observed that the interpolated
ellipses have a quite uniform distribution. The Gaussian curva-
ture of Fig.1 is shown in Fig.2. Here curvatures are calculated
according to eq.(4), where the 1st and 2nd order differentiations
are obtained by convolution of the metric tensor with a Gaus-
sian kernel with standard deviation one subjected to the same 1st
and 2nd order differentiation. In all figures below, we illustrate a
negative value of curvature with blue color, and positive value of
curvature with red color, the absolute values of the curvatures are
proportional to the scale of each color. One can observe that the
curvature is negative inside the convex hull of the jnd ellipses.
The Riemann normal coordinates can therefore be constructed
using geodesics starting in D65 the CIELUV space as shown in
Fig.3(See also [5]).

Curvature in CIELAB space
Next we repeat the calculations but now use CIELAB co-

ordinates. First, the 25 MacAdam ellipses are interpolated as in
Fig.4 in the same way as in the CIELUV space. We observed
however that the interpolated ellipses are not as uniformly dis-
tributed as in the CIELUV space. The curvature of the chro-
maticity plane in the CIELAB space is calculated as in Fig.5. It
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Figure 1. Interpolation of MacAdam’s ellipses in CIELUV
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Figure 2. Curvature of MacAdamn ellipses in CIELUV space

Figure 3. Riemann normal coordinates in CIELUV space using MacAdam’s

ellipses

Figure 4. Interpolation of MacAdam ellipses in CIELAB space

Figure 5. Curvature of MacAdamn ellipses in CIELAB space

can be observed that there are areas with large positive curvature
values. Therefore, if one tries to draw geodesics using the metric
in Fig.5, these geodesics intersect around the regions with posi-
tive curvature as can be seen in Fig.6. This illustrates that in the
CIELAB case one cannot, in general, construct Riemann normal
coordinates within the convex hull of the ellipses.

We also used another set of jnd ellipses in the CIELAB
space by G. Cui et. al. (see [8]). The results obtained based
on these measurements are shown in Fig.7. These ellipses are
also interpolated inside the convex hull of the data points as in
Fig.8. Certain non-uniformness can also be observed in the el-
lipses distribution. The curvature calculated from the metric ob-
tained from Fig.8 is shown in the Fig.9. Once again, one can
observe that there are several red areas indicating regions of pos-
itive curvatures. Again, if one tries to draw geodesics in or-
der to build the Riemann normal coordiantes, intersections be-
tween geodesics occur around the areas with positive curvature,
as shown in Fig.10.

Also here, this prevents the construction of the Riemann
normal coordinates for the complete region under investigation.

Smoothing in CIELAB space
One possible way try to avoid the problem with the posi-

tiveness of the curvature is to smooth the metric or ellipses inter-
polation. We smoothed the metric data by G. Cui et. al. using a
Gaussian filter of standard deviation 12 with a neighborhood of
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Figure 6. Geodesics intersect each others in CIELAB space around positive

curvature areas

Figure 7. The threshold ellipses by G. Cui et. al. in CIELAB space

Figure 8. Interpolation of ellipses by G. Cui et. al. in CIELAB space

Figure 9. Curvature of the ellipses by G. Cui et. al. in CIELAB
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Figure 10. Intersection of geodesics in CIELAB using ellipses by G. Cui et.

al.
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Figure 11. Curvature of smoothed ellipses by G. Cui et. al. in CIELAB

Figure 12. Riemann normal coordinates in area of negative curvature after

smoothing

size 97× 97. The curvature after smoothing is shown in Fig.11.
After smoothing the small positive curvature areas of the central
region are removed. Thus one can draw geodesics, and therefore
build a Riemann normal coordinate system inside this region of
negative curvature as shown in the Fig.12. The down-right part
in Fig.11 with positive curvature is actually the area in which the
data points are very sparse. In general smoothing may reduce
fluctuations of curvature. In particular, the absolute values of
curvatures are reduced or both positive and negative curvatures
become near zero. On the other hand, large scale features in total
distribution of curvature remained.

Meanwhile, the sizes of the threshold ellipses become
smaller after smoothing as shown in Fig.13 where they are five
times magnified. The shapes of jnd ellipses change also consid-
erably after the smoothing operation, which could be undesirable
in certain cases.

Riemann normal coordinates in spaces with
positive curvature

Assume that a color space contains parts with positive cur-
vature. Then, according to the above investigation, it is impossi-
ble to construct a single system of Riemann normal coordinates
for the whole space. In the following we present an algorithm
that can be used to build a multi-patch coordinate system in color
spaces that contain areas of positive curvature.

Figure 13. Jnd threshold ellipses after smoothing

Figure 14. A multi-patch Riemann normal coordinate systems in CIELAB

space for ellipses by G. Cui et.al.

For a 2D Riemann space M, denote by ρ the length of
geodesics from the same starting point to their intersection point.
According to Rauch’s theorem [3], let K be the curvatures of M,
if 0 < L ≤ K ≤ H, then

π√
H

≤ ρ ≤ π√
L

. (5)

In order to build a coordinate system for the whole space, we will
use more than one Riemann normal coordinate system. The cal-
culations can be done in parallel allowing fast implementations
for practical applications and also reduce numerical integral er-
rors.

In this construction, one first calculates the curvature and
then estimates the minimal length ρmin, which gives us the dis-
tance between the origins of the coordinate systems. One can
determine the positions of the origins so that they are separated
within twice of the ρmin. All geodesics will be stopped less than
ρmin. Then one can apply a coordinates transformation between
the different Riemann normal coordinates so that a global coor-
dinates of an arbitrary point can be obtained.

Figure 14 shows a multi-patch Riemann normal coordinates
in CIELAB space using ellipses by G. Cui et. al.. In fact, the
smoothing can be combined with the multi-patch strategy. Since
smoothing reduced the value of the positive curvature, the size of
each patch is enlarged and the number of the patches is reduced.
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Figure 15. A multi-patch Riemann normal coordinate systems in CIELAB

after smoothing ellipses by G. Cui et. al.

A trade off is then possible between acuracy after smoothing and
efficiency of multi-patch coordinates construction. A multi-patch
Riemann normal coordinate system is shown in Fig.15.

Summary and Conclusions

We have shown that the curvature of a color space mea-
sures a very important geometric property of the space. We also
discussed why this has very important theoretical and practical
implications for color science and technology. In particular, we
have shown that a Munsell-like coordinates or Riemann normal
coordinates only exist for a color space with negative or zero cur-
vature everywhere.

We used two sets of jnd threshold ellipses and investigated
properties of the color spaces constructed from them. We showed
that there are significant differences between the spaces based on
the CIELUV and the CIELAB system, and both of them are quite
different from a uniform color space in the sense that instead
of having zero curvature, they have either positive and nega-
tive curvatures. Our experiments with interpolation methods also
showed that interpolation between discrete measurement points
is an important factor. One alternative to use another metric in the
space of symmetric positive-definite matrices in the construction
([7]). This construction is based on the observation that ellipses
are the solutions of equations x′Cx = 1 where x is the coordi-
nate vector and C is a symmetric positive-definite matrix. In [7]
it is shown that it is possible to find a metric in the space of
such matrices C such that the distance d(C1,C2) between two
matrices C1,C2 is invariant under all linear coordinate transfor-
mations, i.e. d(C1,C2) = d(T ′C1T,T ′C2T ) for all non-singular
matrices T . For this metric it is possible to give an algorithmic
description of the construction of geodesics in this space. Using
this metric in the space of symmetric positive-definite matrices
it is possible to introduce alternative interpolation strategies that
have a geometrical background in the properties of the matrix
space.

We also presented a strategy to build a global coordinates
using multi-patch geodesics for color spaces with regions of pos-
itive curvature. Future research will include the investigation of
curvature computed from other measurement data and models
and we will also investigate the influence of different interpola-
tion schemes on the final results.
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