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Abstract
In this article we present a statistical framework for auto-

matic classification and localization of 3D objects in 2D images.
The new functionality of the framework allows us to use objects
represented in different color spaces including gray level, RGB,
and Lab formats. First, the objects are preprocessed and descri-
bed by local wavelet features. Second, statistical modeling of the-
se features under the assumption of their normal distribution is
performed in a supervised way. The resulting probability density
functions are determined by the maximum likelihood estimation.
The density functions describe a particular object class from a
particular training viewpoint. In the recognition phase, local fea-
ture vectors are computed from an image with an unknown object
in an unknown pose. Those features are then evaluated against
the trained density functions which yields the classes and the po-
ses of objects found in the scene. Experiments performed for mo-
re than 40.000 images with real heterogeneous backgrounds have
delivered very good classification and localization rates for all
investigated object representations. Moreover, they brought us to
interesting conclusions considering the general performance of
statistical recognition systems for different image representati-
ons.

Introduction
One of the most fundamental problems of computer visi-

on is the recognition of objects in digital images. Throughout
this paper the term object recognition comprehends both, the
classification and the localization of objects. The task of ob-
ject classification is to determine the classes of objects occur-
ring in the image f from a set of predefined object classes
Ω = {Ω 1,Ω 2, . . . ,Ω κ , . . . ,Ω NΩ }. Generally, the number of ob-
jects in a scene is unknown, however, in this work we assume
that exactly one object is expected in an image. In the case of
object localization, the recognition system estimates the poses of
objects in the image, whereas the object classes are assumed to
be known. The object poses are defined relatively to each other
with a 3D translation vector t = (tx,ty,tz)T and a 3D rotation vec-
tor φ = (φx,φy,φz)T in a coordinate system with an origin placed
in the image center [1]. Figure 1 visualizes this definition.

For recognition of 3D objects in 2D images, two main ap-
proaches are known in computer vision: based on the result of ob-
ject segmentation (shape-based), or by directly using the object
texture (texture-based). Shape-based methods make use of geo-
metric features such as lines or corners extracted by segmentation
operations. These features as well as relations between them are
used for object description [2]. However, the segmentation-based
approach often suffers from errors due to loss of image details
or other inaccuracies resulting from the segmentation process.
Texture-based approaches avoid these disadvantages by using the
image data, i. e., the pixel values, directly without a previous seg-
mentation step. For this reason the texture-based method for ob-
ject recognition has been chosen to develop the system presented

in this contribution.

The object recognition problem has been intensively inve-
stigated in the past. Many approaches to object recognition, li-
ke the one presented in this paper, are founded on probability
theory [3], and can be broadly characterized as either generati-
ve or discriminative according to whether or not the distribution
of the image features is modeled [4]. Generative models such as
principal component analysis (PCA) [5], independent component
analysis (ICA) [6] or non-negative matrix factorization (NMF)
[7] try to find a suitable representation of the original data [8].
In contrast, discriminative classifiers such as linear discriminant
analysis (LDA) [9], support vector machines (SVM) [10], or boo-
sting [11] aim at finding optimal decision boundaries given the
training data and the corresponding labels [8]. The system pre-
sented in this paper represents the generative approaches.

There are further interesting approaches for object recogni-
tion. Amit et al. proposes in [12] an algorithm for multi-class
shape detection in the sense of recognizing and localizing in-
stances from multiple shape classes. In [13] a method for extrac-
ting distinctive invariant features from images that can be used to
perform reliable matching between different views of an object
or scene is presented. In [14] the problem of detecting a large
number of different classes of objects in cluttered scenes is taken
into consideration. [15] proposes a mathematical framework for
constructing probabilistic hierarchical image models, designed
to accommodate arbitrary contextual relationships. In order to
compare different methods for object recognition, in [16] a new
database specifically tailored to the task of object categorization
is presented. In [17] an object recognition system is described
that uses a new class of local image features. The features are
invariant to image scaling, translation, and rotation, and partially
invariant to illumination changes and affine or 3D projection. In
[18] a multi-class object detection framework whose core com-
ponent is the nearest neighbor search over object part classes is
presented.

Classification and localization of objects in images is a use-
ful, and often indispensable step, for many real life computer vi-
sion applications. Algorithms for automatic computational object
recognition can be applied in areas such as: face classification
[19], fingerprint classification [20], handwriting recognition [21],
service robotics [22], medicine [23], visual inspection [24], the
automobile industry [25], etc. Although successful applications
have been developed for some tasks, e. g., fingerprint classificati-
on, there are still many other areas that could potentially benefit
from object recognition. The system described in this article has
been tested in real application scenarios. One of these is the clas-
sification of artefacts following a visit to a museum, another is
the analysis of metallography images from an ironworks.

Our experimental study on a dataset with more than 40.000
real-world images has shown that the classification and localiza-
tion rates are dependent on the color space which is used for
feature extraction. Therefore, in this paper we experimentally
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Bild 1. Examples of object poses and their values. The components of the internal translation vector tint = (tx,ty)T are given in pixels, the components of the

rotation vector φ = (φx,φy,φz)T in degrees [◦], and the external translation (scaling) text = tz in percent [%] of a reference object size (top left).

compare the system performance for gray level, RGB, and Lab
images. The paper is structured as follows. Section presents the
training phase of the system, Section deals with the classificati-
on and localization, Section describes and discusses the results,
and finally, Section concludes the paper.

Supervised Statistical Learning
Since statistical learning is performed in the same way for

all object classes, the index κ denoting the number of class will
be skipped in this section, i. e., Ω κ = Ω . Our framework per-
forms the supervised statistical learning in following steps: (i)
object acquisition from different viewpoints, (ii) preprocessing
into one of the investigated color spaces, (iii) feature extraction,
(iv) object area definition, and (v) estimation of the multivaria-
te likelihood density function. These steps are described in the
following subsections keeping their order.

Acquisition
In order to capture training data, objects are put on a turn-

table that rotates to set angles, and training images are taken for
each of these angles. The camera is fixed on a mobile arm that
can move around the object. The turntable position produces in-
formation about the rotation φy of the object around the vertical
y axis. The position of the camera relative to the object yields
the object’s rotation φx around the horizontal x axis. The object’s
scale (translation tz along the z) can be set with the zoom para-
meter of the camera, or by moving the camera closer or further
from the object. By modifying the camera parameters and po-
sition, images can be captured from all top and sidewise views
of the object with known external pose parameters (φ ext,text) for
each training image. The translation of the object in the image

plane (internal translation) t int = (tx,ty)T as well the internal ro-
tation φint = φz can be determined after the acquisition process
from the relative position of the object in the image. The object
pose parameters are usually given relative to each other, as can
be seen in Figure 1. For each object class, one image is chosen as
the reference image. The pose of an object in an image is under-
stood as being the 3D transformation (rotation and translation)
that maps that object into the reference image.

Preprocessing
The original images taken as described in the previous sub-

section are now preprocessed. First, the scenes are resized to
2n × 2n (n ∈ N) pixels. Then, they are converted into three dif-
ferent representations, namely gray level, RGB, and Lab images.

Unlike the gray level and RGB representations, Lab color
is designed to approximate human vision. It aspires to perceptu-
al uniformity, and its L component closely matches human per-
ception of lightness. It can thus be used to make accurate color
balance corrections by modifying output curves in the a and b
components, or to adjust the lightness contrast using the L com-
ponent. In RGB space, which models the output of physical de-
vices rather than human visual perception, these transformations
can only be done with the help of appropriate blend modes in the
editing application [26].

Features
The system determines a set of local feature vectors cm for

all preprocessed training images of an object via the discrete wa-
velet transform [27]. In order to calculate the cm vectors, a grid
with size Δ r = 2|̂s|, where ŝ is the minimum multiresolution sca-
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Bild 2. 2D signal decomposition with the wavelet transform for a local neighborhood of size 4× 4 pixels. The final coefficients result from gray values b0,k,l

and have the following meaning: b−2 : low-pass horizontal and low-pass vertical, d0,−2 : low-pass horizontal and high-pass vertical, d1,−2 : high-pass horizontal

and high-pass vertical, d2,−2 : high-pass horizontal and low-pass vertical.

le parameter 1 s, is overlaid on the image [1]. Figure 2 depicts
this procedure for the case of gray level scenes divided into local
neighborhoods of size 4×4 pixels. Using the coefficients intro-
duced in Figure 2, the local feature vector cm for the gray level
image is defined by,

cm =
(

cm,1
cm,2

)
=

(
ln(2ŝ|bŝ|)
ln[2ŝ(|d0,̂s|+ |d1,̂s|+ |d2,̂s|)]

)
. (1)

In the feature vector, the first component cm,1 stores information
about the mean gray level (low-frequencies) in the local neigh-
borhood, while the second component cm,2 represents disconti-
nuities (high-frequencies). The natural logarithm (ln) decreases
the sensibility of the system to illumination changes and muffles
any noises, which occur very often, especially in the real world
environment. Its use is experimentally motivated in [28]. In the
case of RGB and Lab images, each channel is treated indepen-
dently. The feature computation for each channel is performed in
the same way as for gray level images (see Figure 2). Therefore,
the local feature vector for color images has six components,

cm = (cm,1,cm,2,cm,3,cm,4,cm,5,cm,6)T . (2)

The first cm,1 and the second cm,2 components are calculated
from the first channel, the third cm,3 and the fourth cm,4 from
the second channel, and the fifth cm,5 and the sixth cm,6 from
the third channel [29]. Generally, the system is able to compu-
te local feature vectors for any resolution scale ŝ, but in practice
ŝ ∈ {−1,−2,−3} is preferred.

Object Area
Clearly, some feature vectors in each training image descri-

be the object, while others belong to the background. In real life
applications it cannot be assumed that the background is a-priori
known in the recognition phase. Therefore, only feature vectors
describing the object are considered for statistical object mode-
ling. Since the object usually composes a part of the image, a
tightly enclosing bounding region O called object area is defi-
ned for each object class. For clarity, we will use the term object
area to actually refer to the set of features belonging to the ob-
ject. The object area can change its location, orientation, and size
from image to image depending on the object pose parameters.
For this reason, it is modeled as a function of the external pose
parameters

O = O(φ ext,text) , (3)

1i.e. Further decomposition of the signal with the wavelet transform
is not possible.

ideally within a continuous domain. This is done by using the so
called assignment functions ξ defined for all feature vectors cm

and all training viewpoints (φ ext,text) as

ξ = ξ m(φ ext,text) . (4)

The assignment function ξ m decides, whether the feature vector
cm belongs to the object in the pose (φ ext,text) or to the back-
ground, as follows,

{
ξ m(φ ext,text) ≥ SO ⇒ cm ∈ O(φ ext,text)
ξ m(φ ext,text) < SO ⇒ cm �∈ O(φ ext,text)

}
, (5)

where the threshold value SO is set experimentally and has the
same value for all object classes. The assignment functions are
trained for each training view separately

ξ m(φ ext,text) =
{

1, if cm,1 ≥ Sξ
0, if cm,1 < Sξ

}
, (6)

where Sξ is a threshold value. Since cm,1 results from a low-
level filtering of a small neighborhood it represents, the practical
execution of the training is quite simple. The objects are taken
on a nearly black background and a threshold value Sξ decides
whether they belong to the object or to the background. Since
there is a finite number of training views (φ ext,text), these are
discrete functions initially, but after interpolation with the sine-
cosine transformation they become continuous. Therefore, consi-
dering both the internal and external transformation parameters,
the object area can be expressed by the function

O = O(φ ,t) (7)

defined in a continuous six-dimensional pose parameter space
(φ ,t).

Likelihood Density Function
In order to handle illumination changes and low-frequency

noise, the elements cm,q of the local feature vectors cm are in-
terpreted as random variables. Assuming the object’s feature
vectors cm ∈ O as statistically independent of the feature vec-
tors outside the object area, the background feature vectors
cm �∈ O can be disregarded here. The elements of the object
feature vectors are represented with Gaussian density functions
p(cm,q|μm,q,σm,q,φ ,t). The mean μm,q and standard deviation
σm,q values are estimated for all training views (φ ext,text), which
form a subspace of (φ ,t). Assuming the statistical independence
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of the elements cm,q, which is valid due to their different inter-
pretations in terms of signal processing, the density function for
the object feature vector cm ∈ O can be written as,

p(cm|μμμm,σσσm,φ ,t) =
Nq

∏
q=1

p(cm,q|μm,q,σm,q,φ ,t) , (8)

where μμμm is the mean value vector, σσσm the standard deviation
vector, and Nq the dimension of the feature vector cm (Nq = 2
for gray level images, Nq = 6 for color images). Further, it is
assumed that the feature vectors belonging to the object cm ∈ O
are statistically independent. Under this assumption, an object
can be described by the probability density p as follows,

p(O|BBB,φ ,t) = ∏
cm∈O

p(cm|μμμm,σσσm,φ ,t) , (9)

where BBB comprises the mean value vectors μμμm and the standard
deviation vectors σσσ m. This probability density is termed the ob-
ject density and, taking into account (8), can be written in more
detail as,

p(O|BBB,φ ,t) = ∏
cm∈O

Nq

∏
q=1

p(cm,q|μm,q,σm,q,φ ,t) . (10)

In reality, neighboring feature vectors might be statistically de-
pendent, but considering the full neighborhood relationship, e. g.,
as a Markov Random Field [30], leads to a very complex model.
In order to complete the object description with the object den-
sity (10), the means μm,q and the standard deviations σm,q for
all object feature vectors cm have to be learned. For this purpo-
se, Nρ training images of each object f ρ are used in association
with their corresponding transformation parameters (φ ρ ,tρ ). The
mean vectors μμμm concatenated, written as μμμ , and the standard
deviation vectors σσσm concatenated, written as σσσ , can be estima-
ted from the maximization of the object density (10) over all Nρ
training images,

(μ̂μμ , σ̂σσ) = argmax
(μμμ ,σσσ )

Nρ

∏
ρ=1

p(O|BBB,φ ρ ,tρ) . (11)

As a result of a subsequent interpolation step, the mean vectors
μμμm and standard deviation vectors σσσm are trained for all pose
parameters (φ ,t) in a continuous sense.

Classification and Localization
Since for all object classes Ω κ regarded in a particular reco-

gnition task corresponding object models M κ have already been
learned in the training phase, the system is able to classify and
localize objects in images taken from a real world environment.
First, a test image is taken, preprocessed, and feature vectors in
it are computed. Second, the system starts the recognition algo-
rithm integrated into it. In order to perform the classification and
localization in the image f , the density values

pκ ,h = p(Oκ |BBBκ ,φh,th) (12)

for all objects Ω κ and for a large number of pose hypotheses
(φ h,th) are compared . The computation of the object density
value pκ ,h for the given object Ω κ , and pose parameters (φh,th)
starts with the estimation of the object area Oκ (φh,th) which has
been learned in the training phase. For feature vectors from this
object area cm ∈ Oκ(φ h,th) the mean value vectors μμμκ ,m and

standard deviation vectors σσσκ ,m have been trained and are stored
in the object models. Therefore, their density values

pcm = p(cm|μμμκ ,m,σσσκ ,m,φh,th) (13)

can be easily determined. Now, the object density value is calcu-
lated as follows

pκ ,h = ∏
cm∈Oκ

max{pcm , Tp} , (14)

where Tp is a threshold value ensuring that density values pcm

close to zero are not taken into account by the product. These
density values pcm ≈ 0 may result from artifacts or occlusions.
The object densities (14) normalized by a quality measure Q are
maximized over all object classes Ω κ and a large number of pose
hypotheses (φh,th), as explained in Figure 3. The quality measu-
re (also called geometric criterion), defined in the following way

Q(pκ ,h) = Nκ,h
√

pκ ,h (15)

decreases the influence the object size has on the recognition
results. Nκ ,h denotes the number of feature vectors that belong
to the object area Oκ (φh,th). The classification and localization
process presented in Figure 3 can be described by the following
maximization term

(κ̂, φ̂ , t̂) = argmax
(κ ,φh,th)

Q(p(Oκ |BBBκ ,φh,th)) (16)

where (κ̂ , φ̂ , t̂) represent the final recognition result, i. e., the class
index and the pose parameters of the object found in image f .

Experiments and Results
3D-REAL-ENV Image Database

In our experiments we used the 3D-REAL-ENV [29, 1] da-
tabase consisting of the ten real world objects depicted in Figure
4. The pose of each object in the 3D-REAL-ENV database is de-
fined by internal translations t int = (tx,ty)T and external rotation
parameters φ ext = (φx,φy)T. The objects were captured in RGB
at a resolution of 640× 480 pixels under three different illumi-
nation settings Ilum ∈ {bright,average,dark}. For this experiment
the captured images were resized to 256×256 pixels and conver-
ted into three different representations, namely gray level, RGB,
and Lab images.

Training images were captured with the objects against a
dark background from 1680 different viewpoints under two dif-
ferent illumination settings Ilum ∈ {bright,dark}. This produced
3360 training images in total for each 3D-REAL-ENV object.
Each object was placed on a turntable performing a full rotati-
on (0◦ ≤ φtable < 360◦) while the camera attached on a robotic
arm was moved on a vertical to horizontal arc (0◦ ≤ φarm ≤ 90◦).
The movement of the camera arm φarm corresponds to the first
external rotation φx, while the turntable spin φtable corresponds
to the second external rotation parameter φy. The angle between
two successive steps of the turntable corresponds to 4.5◦. The ro-
tation of the turntable induces an apparent translation in the ob-
ject position in the image plane, which results in varying internal
translation parameters t int = (tx,ty)T. These translations parame-
ters were determined manually after acquisition.

For testing, the ten objects presented were captured from
288 different viewpoints under the average illumination setting
(Ilum = average) and against three different backgrounds: homo-
geneous, weak heterogeneous, and strong heterogeneous. This
resulted in three test sets of 2880 images each denoted ac-
cording to the background used as Type ∈ {hom,weak,strong}.
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Bild 3. Density maximization for object classification and localization. First, local feature vectors from the preprocessed test image are computed. Then, for

each object class Ω κ and each pose hypothesis (φ h,th) the object area Oκ (φh,th) is determined and the object density pκ,h is calculated. The final recognition

result (κ̂ , φ̂ , t̂) corresponds to the highest density normalized by a quality measure Q(pκ,h).

Test scenes of the first type (Type = hom) were taken on ho-
mogeneous black background, while 200 different real back-
grounds were used to create heterogeneous backgrounds (Type ∈
{weak,strong}). Examples of test images with all three types
of background are shown in Figure 5. Similarly to the acqui-
sition of training images, the objects were put on a turntable
(0◦ ≤ φtable < 360◦) and the camera moved on a robotic arm from
vertical to horizontal (0◦ ≤ φarm ≤ 90◦). However, for test images
the turntable’s rotation between two successive steps is 11.25◦,
thus test views are generally different from the views used for
training. Also, the illumination in the test scenes is different from
the illumination in the training images.

Experimental Results
The recognition algorithm was evaluated for the 3D-REAL-

ENV image database presented in the previous section. The trai-
ning of statistical object models was performed for 6 angle-steps
(4.5◦, 9◦, 13.5◦, 18◦, 22.5◦, 27◦). Since this was done three ti-
mes, i. e., for gray level, RGB, and Lab images it resulted in 18
training configurations. The classification and localization rates
obtained for these configurations are summarized in Table 1. A
classification result is counted as correct when the algorithm re-
turns the correct object class. A localization result is counted as
correct when the error for internal translations is not greater than
10 pixels and the error for external rotations not greater than 15◦.
The results show that color modeling brings a significant impro-
vement in the classification and localization rates for test images
with strong heterogeneous background. Here, the best results ha-
ve been obtained for the Lab images. For scenes with weak hete-
rogeneous background, gray level and RGB representations lead
to reasonable results, while Lab color space fails in this case. For
scenes with homogeneous background the recognition algorithm

performs perfectly in all three cases. For this type of background
the computational expense associated with color information can
be avoided. In Table 1 one can also see how the recognition ra-
tes depend on the distance of training views. For test images with
homogenous background, the classification algorithm works pro-
perly even for a high distance of 27◦. However, it becomes wor-
se in more complex scenarios. The localization rates show their
strong dependency on the distance of training views for all three
test datasets. The reason for this is the necessary interpolation
between the training views. Obviously, this interpolation works
more precisely for denser data sets in terms of training view-
points. Object recognition takes 3.6s in one gray level image and
7s in one color image on a workstation equipped with a Pentium
4, at 2.66 GHz, and 512 MB of RAM.

Conclusions
This article presents a system for 3D texture-based proba-

bilistic object classification and localization in 2D images and
discusses its performance for three different image formats, na-
mely the gray level, the RGB, and the Lab representations. Expe-
rimental results on an image database of over 40,000 images illu-
strate the high performance of our system. While for test images
with homogeneous background the recognition rates are almost
perfect for all three image representations, they vary in more
complex environments. Color modeling, especially the Lab color
space, brings the most benefits in very complex scenes (strong
heterogeneous background). However, for images with weak he-
terogeneous background, the gray level and RGB formats present
higher performance.

Improvements are possible with the approach and will form
the basis of our future work. One line of research is to consider
combining the appearance-based model with a shape-based mo-
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Ω 1 = bscup Ω 2 = fireeng Ω 3 = greenpunch Ω 4 = medcup Ω 5 = nizoral

Ω 6 = perrier Ω 7 = ricola Ω 8 = stapler Ω 9 = truck Ω 10 = whitepunch

Bild 4. Ten objects of the 3D-REAL-ENV image database with their short names. Top row from left to right: bank cup, toy fire engine, green puncher, siemens

cup, nizoral bottle. Bottom row from left to right: toy passenger car, candy box, blue stapler, toy truck, white puncher.

del for object recognition. There are objects with the same shape,
which are distinguishable only by texture, but one can also ima-
gine objects with the same texture features, which can be easily
distinguished by shape. Finally, since our system is adaptable to
many image classification tasks we also intend to apply it in the
context of knowledge assisted image and video content retrieval.
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Distance Type of Classification Rate [%] Localization Rate [%]
of Training Object Hom. Weak Strong Hom. Weak Strong
Views [◦] Modeling Back. Het. Het. Back. Het. Het.

4.5
Gray 100 92.2 54.1 99.1 80.9 69.0
RGB 100 88.0 82.3 98.5 77.8 73.6
LAB 100 67.0 90.2 99.1 71.4 77.8

9.0
Gray 100 92.4 55.4 98.7 80.0 67.2
RGB 100 88.3 81.2 98.2 76.4 72.1
LAB 100 66.7 90.7 99.1 70.6 78.6

13.5
Gray 99.4 89.7 56.2 96.9 78.6 65.4
RGB 99.6 82.7 80.3 94.9 68.4 66.6
LAB 100 65.3 87.8 98.7 64.2 74.8

18.0
Gray 99.9 89.2 55.1 96.6 71.4 54.5
RGB 97.3 80.6 68.6 94.3 64.9 60.7
LAB 100 63.3 83.9 97.0 62.2 69.0

22.5
Gray 99.4 86.0 52.8 94.5 60.7 38.6
RGB 94.7 74.8 59.2 89.4 52.2 46.2
LAB 99.9 57.5 77.7 94.5 49.6 55.5

27.0
Gray 96.5 69.4 54.4 83.8 49.9 32.8
RGB 93.8 53.6 50.2 78.3 35.8 35.6
LAB 99.1 43.6 62.2 92.0 37.2 41.2

Classification and localization rates obtained for 3D-REAL-ENV image database with gray level, RGB, and Lab images. The
distance of training views varies from 4.5◦ to 27◦ in 5 steps. For experiments, 2880 test images with homogeneous, 2880 test
images with weak heterogeneous, and 2880 images with strong heterogeneous background were used.
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