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Abstract
Color has been shown to be a very important clue in the

context of texture classification. However, since color is not sta-
ble across illumination changes, color invariant descriptors are
required when the illumination is not controlled. In this paper, we
propose to characterize color textures by analyzing the rank cor-
relation between pixels located in the neighborhood from each
other. Thus, considering one distance and one direction in the
image space, we obtain a correlation measure which i) is re-
lated to the colors of the pixels, ii) is not sensitive to illumination
changes, iii) represents the spatial interactions between different
color components of neighbored pixels. Furthermore, we show
how this measure can be very fast extracted from co-occurrence
matrices. The discriminative power of this descriptor is assessed
on a public color texture database.

Introduction
In this paper, we specifically address the problem of color

texture classification across illumination changes. For this pur-
pose, we consider images of color textures acquired with the
same viewpoint and the same scale factor but under three differ-
ent illuminations (see fig. 1). In this context, different approaches
for color texture description have been introduced [6, 31]. For
example, the structural approach consists in analyzing the rela-
tive positions of features extracted from the image [2]. One other
approach tries to model the spatial repartition of the colors in the
image. In this aim, one can use Markov Random Fields [7, 33] or
Local Binary Pattern [28, 23]. The third approach transforms the
image into a spatial frequency domain in order to extract discrim-
inative information. Several transforms can be used such as the
discrete cosine transform [11], the Gabor filters [30] or wavelet
decomposition [9]. The last approach consists in characterizing
the content of an image thanks to statistical parameters. These
parameters can be extracted from first-order histograms [23],
from co-occurrence matrices [29, 20], from sum and difference
histograms [35, 24] or from run-length matrices [17, 36].

Figure 1. Three textures under three different illuminations. These images

are from the Outex14 database [27] (http://www.outex.oulu.fi).

The analysis of the results provided by the most recent
works shows that color is a very important clue to charaterize tex-
tures and that it is more efficient to use descriptors which account
the spatial interactions between different color components than
descriptors which are based on the spatial interactions within
each color component independently [29, 3, 21, 31]. Thus, since
the co-occurrence matrices provide good results, we propose to
extract color texture descriptors from the inter-component co-
occurrence matrices [29].

However, we know that the color of a pixel is not stable
across illumination changes. To cope with this problem, the most
classical approach consists in applying a pre-processing step in
order to transform the color images into invariant images where
the pixels are characterized by invariant components which are
less sensitive to illumination changes. The invariant components
are based either on a local normalization (e.g. iterative normal-
ization [12], Retinex [8], color ratios [10, 16]) or a normalization
based on the whole image (e.g. greyworld [4], color by correla-
tion [13]). Unlike the classical approaches which model the color
variations in case of illumination changes by linear transforma-
tions, Finlayson proposed a non-linear transformation based on
the rank measures of the pixels [14].

Nevertheless, it has been shown that the rank measures of
the pixels are not systematically invariant in case of illumina-
tion changes [26]. Indeed, since some elementary surfaces may
have the same color under one illuminant and different colors un-
der another illuminant (metamerism), some pixels may have the
same rank measures in one image and different rank measures
in another image. Consequently, in [26], the authors have pro-
posed to characterize the content of the images with a rank cor-
relation measure which copes with this problem. This measure
was shown to provide very good results in the context of object
recognition across illumination changes [25, 32]. The aim of this
paper is to use this measure in order to classify color textures.
Indeed, when this measure is extracted from inter-component co-
occurrence matrices, it represents the correlation between differ-
ent color components of neighbored pixels. Thus, it seems to be
very well adapted to color texture classification task since : i) it
is based on color, ii) it represents the spatial interactions between
different color components and iii) it is invariant to illumination
changes.

The exploited rank correlation measure was initially pro-
posed by Kendall [22] and is presented in the next section.
Then, in the third section we show how we can extract this mea-
sure from the inter-component co-occurrence matrices. Finaly,
the proposed classification system is assessed on the outex14
database [27] in the fourth section.

Rank measures and rank correlation
The color images I are decomposed into color component

images IR, IG and IB in which the pixels Pi are characterized by
their red (cR(Pi)), green (cG(Pi)) and blue (cB(Pi)) levels, respec-
tively. Next, within each color component image Ik, the pixels Pi
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are sorted in increasing order of their levels and characterized by
their rank measures expressed as:

Rk[I](Pi) =
Card{Pj ∈ I/ck(Pj) ≤ ck(Pi)}

Card{Pj ∈ I} . (1)

Finlayson assumed that these rank measures are invariant
to illumination changes and showed that this normalization is
equivalent to three 1D-histogram equalizations. Because of the
non-linearity of this normalization, this approach provides better
results than previous classical ones [14].

The aim of rank correlation coefficients is to provide a mea-
sure of the strength of dependency between two variables by
checking the correlation between the rank measures of these vari-
ables. Applied to color images, the variables are the color com-
ponent levels of the pixels and the coefficients measure the cor-
relation between the rank measures of the pixels.

As illustration, we propose to evaluate the correlation be-
tween the red rank measures and the green rank measures of npix

pixels of a color image. This evaluation can be easily generalized
to any pair of color components.

Kendall rank correlation [22] requires to consider each pixel
pair {Pi,Pj}, i �= j, of a color image. If the red and green levels
of the two pixels Pi and Pj are ordered in the same manner, i.e.
if cR(Pi) < cR(Pj) and cG(Pi) < cG(Pj) or if cR(Pi) > cR(Pj) and
cG(Pi) > cG(Pj), the pair {Pi,Pj} is called concordant. Other-
wise, if these pixels are such as cR(Pi) < cR(Pj) and cG(Pi) >
cG(Pj) or such as cR(Pi) > cR(Pj) and cG(Pi) < cG(Pj), the pair
is called discordant. By analyzing all the pairs among the npix
pixels of the considered image, we obtain a measure S which
evaluates the difference between the number of concordant pairs
and the number of discordant pairs. In order to compute the
Kendall’s rank correlation coefficient τ , S is normalized by the

total number of pixel pairs npix(npix−1)
2 so that:

τ =
2S

npix(npix −1)
. (2)

Unfortunately, this rank correlation measure does not con-
sider the case where the levels of the pixels are equal. In this case,
the pair is neither concordant nor discordant so it is not taken into
account during the evaluation of S. Consequently, the Kendall’s τ
depends on the number of tied pixels (characterized by the same
level) in the considered image. Considering two images of the
same scene acquired under different illumination conditions, we
assume that the pixels which are characterized by the same rank
measure in the first image may be characterized by different rank
measures in the second image [26]. Therefore, the number of
tied pixels in the two images may be different and consequently
the Kendall’s τ may be different although the images represent
the same scene. Thus, because of metamerism, the Kendall’s τ is
only coarsely invariant to illumination changes.

Fortunately, when there is a high number of tied pixels, a
corrected version of the Kendall’s τ can be used to account these
pixels [22]:

τ ′ =
S√

( 1
2 npix(npix −1)−T kr)

√
( 1

2 npix(npix −1)−T kg)
, (3)

where Tkr = 1
2 ∑L

r=0 tr(tr −1) and Tkg = 1
2 ∑L

g=0 tg(tg−1) where
tr (tg, resp.) is the number of tied pixels characterized by the
same red (green, resp.) levels r (g, resp.) in the considered image.
L is the number of levels used to quantize the color component
in the image, generally set to 256.

Rank correlation from co-occurrence matri-
ces

A 2D co-occurrences matrix Mk,k′
d,o [I] of an image I can be

considered as an array of cells indexed by color component lev-

els [29]. The cell Mk,k′
d,o [I](u,u′) indicates the number of times

that, in the image I, a pixel P′ whose level ck′(P′) is equal to u′, is
located at the distance d with orientation o from a pixel P whose
level ck(P) is equal to u. Given a distance d and an orientation
o, a color image I is characterized by 6 co-occurrences matrices:
MR,R

d,o [I], MG,G
d,o [I], MB,B

d,o [I], MR,G
d,o [I], MR,B

d,o [I] and MG,B
d,o [I]. Thus,

considering nd different distances di, i = 1, ...,nd and no differ-
ent orientations oi, i = 1, ...,no, each texture is characterized by
6xndxno co-occurrences matrices.

Considering the red and the green components, the
Kendall’s τ ′ represents the mean rank correlation between the
red and the green levels of all pixels without taking into account
the spatial interaction between the pixels in the image. In order to
compensate this drawback, we propose to measure the mean rank
correlation between the red level of a pixel and the green levels
of the pixels which are located at a distance d from this pixel ac-
cording to the orientation o. From the definition of the Kendall’s
τ ′, we can evaluate this measure by considering pairs of occur-
rences rather than pairs of pixels. As illustration, we consider in
an image, one occurrence of pixels for a particular distance d and
a particular orientation o. This occurrence Occ1d,o is constituted
by a pair of pixels {P1,P1′} which are located at a distance d
from each other in the orientation o. Then, we consider a second
occurrence in the same image Occ2d,o which is constituted by a
pair of pixels {P2,P2′}. By extending the definition of concor-
dant pairs of pixels to pairs of occurrences, we can say that the
pair of occurrences {Occ1d,o ,Occ2d,o} is a concordant pair ac-
cording to the red and green components, if the red and green
levels of the pixels in the two occurrences are ordered in the
same manner, i.e. if cR(P1) < cR(P2) and cG(P1′) < cG(P2′) or
if cR(P1) > cR(P2) and cG(P1′) > cG(P2′). Otherwise, if these
occurrences are such as cR(P1) < cR(P2) and cG(P1′) > cG(P2′)
or such as cR(P1) > cR(P1) and cG(P2′) < cG(P2′), the pair of
occurrences is called discordant. The advantage of this correla-
tion measure is that it can be very fast extracted from a 2D co-
occurrence matrix. Indeed, we show below that the numbers of
concordant and discordant pairs of occurrences can be obtained
from the corresponding co-occurrence matrix.

We consider the red-green matrix MR,G
d,o [I]. The cell ci in the

figure 2 represents the number of time that, in the image I, a pixel
P′ whose level cR(P′) is equal to r, is located at the distance d for
the orientation o from a pixel P whose level cG(P) is equal to g.
From the definition, we know that these occurrences constitute
discordant pairs with the occurrences characterized by red levels
lower than r and green levels higher than g. The cells associated
with these occurrences constitute the surface denoted DISCi in
the figure 2. Note that we consider only the occurrences char-
acterized by a green level higher than g so that each occurrence
pair is accounted only once in the evaluation of S. Consequently,
the number of discordant pairs associated with the cell ci in the
figure 2 is:

discordant(ci) = MR,G
d,o [I](r,g)×

r−1

∑
nr=0

L−1

∑
ng=g+1

MR,G
d,o [I](nr,ng)

(4)

We propose to use a similar approach as Bay [1] in order
to speed-up this evaluation. Indeed, we propose to evaluate the
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Figure 2. A red-green co-occurrence matrix MR,G

d,o [I].

top-right integral co-occurrence matrix MtrR,G
d,o [I] from the ma-

trix MR,G
d,o [I]. This integral matrix is evaluated as:

MtrR,G
d,o [I](r,g) =

r−1

∑
nr=0

L−1

∑
ng=g+1

MR,G
d,o [I](nr,ng), (5)

for all {r,g} ∈ [0;L−1].
This top-right integer matrix is used for the calculation of

the numbers of discordant pairs associated with all the cells ci so
that equation becomes:

discordant(ci) = MR,G
d,o [I](r,g)×MtrR,G

d,o [I](r,g). (6)

Thus, by this way, the evaluation of the number of discor-
dant pairs is very fast.

In the same way, we can evaluate the number of concordant
pairs associated with the cells ci:

concordant(ci) = MR,G
d,o [I](r,g)×MbrR,G

d,o [I](r,g), (7)

where MbrR,G
d,o [I] is the bottom-right integer matrix deduced

from the matrix MR,G
d,o [I] thanks to the following equation:

MbrR,G
d,o [I](r,g) =

L−1

∑
nr=r+1

L−1

∑
ng=g+1

MR,G
d,o [I](nr,ng). (8)

The number in the cell ci of this bottom-right matrix is the sum
of the numbers in the cells which constitute the surface denoted
CONCi in figure 2.

Thus, for each cell ci in the matrix MR,G
d,o [I], we obtain very

fast the numbers of concordant and discordant pairs by this way.
The value of S is just deduced from the sum of the differences
between the number of concordant pairs and the number of dis-
cordant pairs for all the cells:

S = ∑
i

concordant(ci)−discordant(ci). (9)

By this way, from each matrix Mk,k′
d,o , we extract the mean

rank correlation between the color components k and k′ of pix-
els located at a distance d from each other for an orientation o.
Thus, a color texture is characterized by 6xndxno rank correla-
tion measures, i.e. 6xndxno real values. In order to compare
the contents of two different textures, we propose to use the Eu-
clidean distance between the vectors constituted by the 6xnd xno

rank correlation coefficients.

Thus, we have shown that the Kendall rank correlation
between pixels located at a particular distance in a particular
orientation can be very fast extracted from the corresponding
co-occurrence matrix. Futhermore, we have also demonstrated
that the Kendall rank correlation is invariant across illumination
changes whereas the co-occurrence matrices in the RGB space
are very sensitive to illumination changes. Thus, the propose
features do not require any color invariant transformation before
being extracted. The next section assesses the performance of
this feature in the case of color texture classification across illu-
mination changes.

Experiments and results
The outex database is used for testing [27]

(http://www.outex.oulu.fi). This database contains color
images from textures acquired under different conditions.
Particularly, the subset called Outex_TC_00014 contains images
of 68 different textures, each one being acquired under one of
three available illuminants : 2300K horizon sunlight, 2856K
incandescent CIE A light source or 4000K fluorescent TL84 (see
fig. 1).

In order to compare our color texture descriptor with other
ones, we propose to use the classification process as those used
by recent papers [18, 19, 23]. Thus, we have used the k-NN clas-
sifier with k=3. The training set was constituted by sample im-
ages of each texture illuminated by incandescent light. For this,
each image was divided into 20 non-overlapping sub-images,
each of size 128 × 128 pixels, producing 1360 training images
since the size of the original image is 746 × 538 pixels. The test
set was constituted by the images acquired under the two other
illuminants (horizon sunlight and fluorescent TL84), once again
with 20 sub-images per texture. For each illumination source,
1360 images are available, making a total of 2720 test images.
The only difference between the paper from Hafiane [18] and
the papers from Handbury [19] and Mäenpää [23] is that Hafi-
ane reduce the number of textures from 68 to 24. So, we have
first tested our method on the 24 textures chosen by Hafiane and
then we have used the complete outex_TC_00014 database in or-
der to compare our results with those provided by Handbury and
Mäenpää.

Table 1 presents the classification rates obtained by our de-
scriptors on the reduced database (24 classes). Our descriptor
is called SC τ ′ (Saptio-Colorimetric Kendall’s τ ′) in this table.
Furthermore, Hafiane [18] provides the performance of the fol-
lowing texture descriptors on this reduced database:

• Median Binary Pattern [18], called MBP in table 1,
• Local Binary Pattern [28], called LBP in table 1,
• Haralick parameters extracted from gray-level co-

occurrence matrices [20], called GLCM in table 1,
• Gabor filter [34], called Gabor in table 1,
• Gaussian Markov Random Field [5], called GMRF in ta-

ble 1.

In Hafiane’s paper, all these descriptors were computed
from gay-level images.

In table 1, for each tested descriptor, we add the dimension
of the feature vector. This information can be interesting for time
processing considerations. Indeed, in the context of color texture
classification (or recognition), the time required for classifying
a query texture is directly related to the dimension of the used
feature vector. Considering our descriptor, we have selected 4
directions from 0o to 135o and 5 distances from 5 to 20. Thus,
for one sample image, we extract 6× 4× 5 = 120 Kendall rank
correlations.
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Descriptors

Classification Dimension of

the feature

vector

rates

Tl84 Horizon Average

MBP 97.3 96.1 96.7 1536

LBP 94.1 90.0 92.1 256

GLCM 11.3 11.1 11.2 112

Gabor 46.2 44.7 45.5 4

GMRF 39.7 55.6 47.7 12

SCτ ′ 99.0 98.9 99.0 120
Color texture classification rates obtained by several descrip-

tors on the reduced outex_TC_00014 database (24 classes).

The classifier is k-NN with k=3. The training set is under in-

candescent light.
Table 2 presents the classification rates provided by our

descriptors on the complete database outex_TC_00014 (68
classes). For comparison, we use the results provided by Hand-
bury [19] and by Mäenpää [23] on this database. Handbury
proposed to use standard morphological texture characterisation
tools such as variogram and granulometry. Applying to color
images, the variogram represents the evolution of the differences
between the color of a pixel and the colors of the pixels located
at a particular distance in a particular direction while the granu-
lometry is the ratio between the color components of a pixel in
the original image and the color components of this pixel after
applying a color opening or closing with a structuring element
of increasing size. These morphological transformations are ap-
plied in the RGB and CIELAB color spaces and on the single L*
component of the CIELAB color space. The results provided by
these descriptors are reported in table 2: VRGB, VLab and VL∗
for variogram and GRGB, GLab, GL∗ for granulometry. Further-
more, Handbury proposed to use an illumination-invariant nor-
malization similar to the histogram equalization proposed by Fin-
layson [14]. Thus, in table 2, we report the classification results
provided by the variograms and granulometries after applying
this illumination invariant normalization on the outex_TC_00014
database: VinvRGB , VinvLab , VinvL∗ , GinvRGB , GinvLab and GinvL∗ .

In his paper, Mäenpää [23] also presents classification rates
on the outex_TC_00014 database provided by some descriptors
such as:

• Color histogram evaluated after applying the illumination-
invariant normalization proposed by Finlayson [15]
(Histoinv),

• Color ratio histograms obtained from the illumination-
invariant normalization proposed by Funt [16] (CR−histo),

• Multiresolution Opponent Color Gabor (Opp−Gabor),
• Multiresolution grays-sale and color (L*a*b*) LBP

(Multi−gray−LBP and Multi−Lab−LBP).

From tables 1 and 2, we notice that the proposed spatio-
colorimetric rank correlation measure provides promising results
in the context of color texture classification. Indeed, the classi-
fication rate obtained on the reduced database is almost perfect
and the rate obtained on the complete outex_TC_00014 database
is significantly higher than the rates obtained by well-known ap-
proaches. Furthermore, the proposed descriptor is compact com-

Descriptors

Classification Dim. of

the

feat.

vect.

rates

Tl84 Horizon Average

VRGB 73.46 65.66 69.56 200

VLab 65.76 73.75 69.76 200

VL∗ 70.07 73.01 71.54 200

GRGB 41.54 47.13 44.34 312

GLab 37.43 56.10 46.77 312

GL∗ 16.40 22.72 19.56 104

VinvRGB 65.59 60.44 63.02 200

VinvLab 74.12 55.22 64.67 200

VinvL∗ 77.35 78.82 78.09 200

GinvRGB 60.44 65.59 63.02 312

GinvLab 69.04 72.13 70.56 312

GinvL∗ 24.41 19.41 21.91 104

Histoinv - - 34.3 4096

CR−histo - - 42.7 4096

Opp−Gabor - - 53.3 84

Multi − gray −
LBP

- - 69.5 1053

Multi − Lab −
LBP

- - 67.8 3159

SCτ ′ 87.8 86.3 87.05 120
Color texture classification rates obtained by several descrip-

tors on the complete outex_TC_00014 database (68 classes).

The classifier is k-NN with k=3. The training set is under in-

candescent light. The results not available in [23] are dis-

played as ’-’.

paring with descriptors which provide similar results. Indeed,
only 120 values are required to classify most of the 68 color tex-
tures acquired under different illuminations.

Conclusion
In this paper, we have proposed a color descriptor designed

for the classification of textures across illumination changes.
This descriptor analyzes the rank correlation measures between
different color components of pixels located at a particular dis-
tance from each other in a particular direction. Thus, it ac-
counts both the colors of the pixels and their spatial interac-
tions. We have shown that this measure can be very fast extracted
from the color co-occurrence matrices of the considered image.
This extraction does not require any color normalization as pre-
processing step since it has been shown that the rank measure of
the pixels are coarsely preserved in case of illumination changes.
Furthermore, the proposed descriptor is very compact comparing
with descriptors which provide similar classification rates. This
compactness is very interesting for time processing considera-
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tions. We have assessed the performance of this descriptor on a
public database showing promising results in the context of color
texture classification across illumination changes.
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