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Abstract
The proposed scanned graphics palette extraction process

starts with the extraction of colors of uniform regions, then the
colors of local features. In order to enhance the discrimination
of unsaturated colors, the image is converted into L*a*b* space
and the CMC color difference is used together with the Euclidean
distance. After the palette extraction, a regularization process
modifies the color of a pixel in order to make it coherent with its
neighborhood, thus reducing the number of connected compo-
nents, hence providing one step further to vectorization. Results
are shown on scanned maps and on some scanned graphics.

Introduction
Vectorization is the process which converts a bitmap image,

i.e. a multi-matrix type of structure, into a set of vectors associ-
ated with specific attributes (color, width, etc.). Vectorized data
offer many advantages: they may be edited, they capture the rel-
evant information in an abstract form and thus offer a high com-
pression rate. The process is thus useful for image compression,
image understanding, and content-based image retrieval.

The problem is not well-posed, as different vector represen-
tations may generate the same raster image. Vectorization thus
imply getting the “best” vector representation producing the con-
sidered bitmap.

According to a recent study [6], approximately 13.5 mil-
lion images are vectorized in the United States every years, con-
suming more than 7 million man hours. These images are made
of photos, artworks, logos, etc. Despite this demand, there has
been limited research done on colored image vectorization ex-
cept from a specific application: scanned maps [3], [5], [16] for
which the vectorization is performed on each colored layer, thus
after the color extraction process. Vectors may then for example
be introduced in Geographical Information Systems to produce
editable maps, or projected on top of some Remote Sensing data.

Commercial vectorization software 1 exist but do not pro-
vide satisfying results in a full automated mode [9]. In
his Phd Thesis, Diebel [6] compares his “Vector Magic”
(http://vectormagic.com/home) vectorization tool with profes-
sional commercial packages proposed by the most important
players in this field: Adobe, Microsoft and Corel, and demon-
strates the superiority of Vector Magic, while recognizing the
good quality of Adobe and Corel software packages, despite the
fact that the latter require fine tuning of some parameters while
“Vector Magic” may work in a full automated mode.

In the following, we start with the capabilities of an ideal
raster-to-vector (R2V) tool. As a first step to reach this goal, we
propose to compute an intermediate simplified image. First, the
optimum palette is extracted. At this stage all pixels are assigned
a label corresponding to the nearest color. Then a regularization
step updates the label of a pixel in order to make it coherent with
its neighborhood. The results of the optimum palette extraction
method is compared with available software and the results of the

1//en.wikipedia.org/wiki/Comparison of raster to vector conversion software

regularization process are shown for several maps and scanned
graphics.

An ideal raster to vector tool
The ideal R2V tool should be able to extract points, lines

and regions from the image and provide for them the character-
istics that a basic vector graphics editor offers.

Points should have a color attribute which may be defined as
a triplet. Should a point have a size attribute? Probably not, oth-
erwise it would be better described as a region. A point should
then be completely defined by its location in the plane: p(x,y),
and its color c(cr ,cg,cb) where x and y are continuous coordi-
nates and cr,cg,cb are the respective components in Red, Green,
Blue, if the RGB color space is used.

Lines should also have a color attribute, but probably not
a width for the same reason. They may be represented as lists
of points pi, linked by linear, circular or elliptic segments or as
piecewise cubic representations such as Bezier curves for exam-
ple. Lines may further be characterized by a “style” such as con-
tinuous, dashed, or dotted. The best R2V tool will recognize the
style of the line, while an acceptable one will identify separately
each element of the line.

Finally regions should be characterized by a border de-
scribed as a line without color nor style. Regular shapes such
as rectangles, circles and ellipses should have a geometric de-
scription; elongated regions should be described by their median
axis and a local width along this axis. A region could be uni-
form, gradually filled, or textured. A uniform region requires a
constant color attribute, gradient filled region requires two colors
and a rule for the evolution of the fill, and finally textured region
requires the generation rule of the texture. Indeed, in a textured
area, what matters is not the exact position of the micro-features
present in the texture, but rather the shape and local distribution
of the latter.

In this framework, thin characters should be described as a
set of lines and thick ones as regions. Their recognition should
be left to an Optical Character Recognition tool (OCR).

The problem of textured region vectorization is illustrated
in Figure 1. A textured region generated by a graphical tool is
shown at the left. A scanned version in which the pixel size is
similar to the micro-feature will produce anti-aliased pixels, as
the probability of the micro-feature to be located exactly on the
same grid is small. A good R2V tool would perform a “vecto-
rial” decomposition of such a textured region providing its set
of micro-features on a uniform background, while the best one
would provide a more abstract definition of the texture.

Today, such an ideal R2V tool performing these tasks as a
whole on color images belongs to science fiction, although much
research have been done on specific separated tasks such as lines
or circles extraction (see [17] and [9]) mainly on binary images.

As a more realistic but still challenging objective, we re-
quire from our future R2V tool to be able to generate a descrip-
tion of the image as a set of points, lines and regions of uniform

320 ©2010 Society for Imaging Science and Technology



Set of Lines 

Blue Line Generator
over uniform green

pixel size

Optical merging or local
averaging

Uniform colors

Orignal Bitmap Region

"Vectorial" decomposition Abstract texture
definition

Figure 1. Vectorization of a textured region

color, and if a texture is present in some region, each of its micro-
elements will be identified separately.

Overview of the proposed method
The envisaged R2V tool may be performed by a three-

phases processing.
In this article we will make use of the following notations:

• Let (i, j) denotes the pixel p located at row j and column i
of a bitmap image,

• let P = {c1, . . . ,ci, . . . ,cn} denotes the set of colors that
will be assigned to the pixels

• let L = {λ1, . . . ,λi, . . . ,λn} be the labels (or index) associ-
ated with these colors

• let λp denotes the label associated with the pixel p,
• let Iλ , I, and Ic denote the labeled image, the original

bitmap color image and the image in which the color at
p has been replaced by the one associated with its label λp

respectively.

The aim of the first phase is to identify the best color palette
P characterizing the image. This task is called “optimum palette
extraction”.

The aim of the second phase is to find the best labeled
image that gave rise to the original bitmap, that is to find Iλ

from the original image I. Thus, at each pixel, we shall find
the “maximum a posteriori estimate” (MAP) λ̂ using Bayes rule:
λ̂p = λ for P[λp = λ |I] = maxλi∈L P[λ = λi|I].

For this phase, we use a Markov Random Field (MRF)
model [7] which assumes that the probability of a label λ , given
all other labels is equal to the probability of the label λ , given the
labels of its neighborhood only. We start with the labeling corre-
sponding to the assignment of each pixel to the nearest color and
update the labeling so as to minimize an energy function defined
as the sum of two terms. The first term penalizes the differences
between the original image I and the labeled image Iλ while the
second penalize improbable local configurations. Such models
have been widely used in image segmentation 2.

Finally the aim of the last phase is to transform the con-
nected components into vectors.

In this contribution, we will address the first two phases of
the suggested vectorization process.

Optimum palette extraction
Optimum palette extraction can be seen as a specific clus-

tering problem. While many articles can be found on palette ex-
traction of photographs, only a few of them deal with graphics.
The latter require in general a much smaller palette and could

2www.visionbib.com/bibliography/segment369.html

Figure 2. Palette extraction: (left) photograph of a Macbeth color Chart

(right) results of median-cut (tiffmedian with n = 28)(up: true colors, down:

false colors)

therefore benefit from higher compression rate, and a representa-
tion closer to their vectorial representation. Moreover, graphics
are usually conceived with a limited number of colors. When the
number of colors in the palette is a power of two, the process is
also known as “color image quantization”. This field has been
widely studied during the eighties and nineties. For a compar-
ison of color image quantization methods see [2]. One popu-
lar method is the median-cut algorithm [8] even proposed as the
linux command “tiffmedian”; it requires n, the number of colors
of the reduced palette (where n is not limited to powers of 2).
The method is fast but the results are not of good quality as can
be seen on Figure 2. The image taken from [14] is a photograph
of a Macbeth color chart. In order to judge both the difficulty
of the image and the quality of the results, the images are also
displayed in pseudo colors.

Evaluation of palette extraction requires both qualitative and
quantitative tests. The qualitative tests involve the visual com-
parison of the original image with the reduced-colored image.
Quantitative tests rely on the computation of a distance between
the original and the reduced-colored image.

Apart from the noise present in the image, the main diffi-
culty of automatic palette extraction of scanned graphics comes
from mixed pixels resulting either from the superposition of ink
in the printing process or from anti-aliasing. Anti-aliasing occurs
at the border of regions of different colors. When the region is a
line, the proportion of such mixed pixels might be as high as one
third: the pixel lying exactly on the medial axis of the line might
get a color close to the one expected, while at both sides, pixels
will be made of a mixture of the line color and the neighboring
region color. If the scanning resolution is too coarse, the width of
thin lines may be smaller than the pixel size, so that anti-aliasing
may also occur on pixels located on the medial axis.

Given this analysis, as far as the palette extraction is con-
cerned, we propose in this contribution a strategy for selecting
the data candidates in order to ignore pixels where anti-aliasing
occurs and the introduction of the CMC color difference [13] not
only for a better discriminative power, but also for quality evalu-
ation.

Selecting data candidates
As the palette should represent the most representative per-

ceived colors, the image is transformed into the uniform L*a*b*
space (noted “Lab” in this paper), in which the Euclidean dis-
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tance reflects the perceived distance. Note that this is actually
not true for low-saturated colors.

Graphics information is contained in points, lines and re-
gions, but not at their interface made of anti-aliased pixels. Edges
should thus be removed from the data candidates. Statistically,
as about 90% of the image edges [10] are present in the inten-
sity image, ignoring edge pixels resulting from a non-maximum
suppression of the gradient norm of the Luminance (a Gaussian
gradient with σ = 0.7 is recommended) will remove most of the
anti-aliased pixels.

Given that:

• the color of thin features may be affected by anti-aliasing,
• the color of points and lines will most probably also be

present in uniform regions,
• uniform regions are perceptively more important,

we suggest to use the median-shift algorithm [12] to extract the
colors of uniform areas first, then to extract the not yet discovered
colors of local features.

Thresholding the Gaussian gradient norm of the Luminance
provides the pixels lying in uniform regions (a threshold of 1.8 is
recommended).

The median shift
The median-shift [12]is an iterative process which shifts

each data point to the “median” point of its neighborhood de-
fined as all the data points located at a distance lower or equal to
R. Data points are viewed as a node in a graph, where nodes are
connected if they belong to the same neighborhood. The “me-
dian point” is defined as the point which has as ith component
the median of the ith components of all points in the neighbor-
hood. The process converges to a set of “clusters” made of one
or several connected nodes. The distance beween two nodes be-
longing to different clusters is larger than R/2.

Therefore, we suggest that all the pixels at a lower distance
than R/2 are considered as correctly assigned. In order to better
discriminate between unsaturated colors, in this paper, the dis-
tance considered is the maximum of the Euclidean distance and
CMC distance [13]. If the percentage of non-assigned uniform
pixels is higher than a threshold (a threshold of 1% of the ini-
tial data set is recommended) , the median-shift is repeated to
get additionnal clusters. Indeed, during the median-shift process,
some color distribution maybe shifted to a close (but nevertheless
different) more dominant color distribution.

The next candidates to consider should be pixels that are not
yet assigned and located at the center of local features. Consid-
ering all pixels but edge pixels give good quantitative results, but
considering among them only the local maxima and minima of
the Luminance and the maxima of the saturation (expressed as√

(a2 + b2) provide better quantitative results and speed up the
process. The rationale of this choice lies on the fact that anti-
aliased colors are less saturated and either less luminous or less
dark than the palette colors.

In color reproduction industry a local color difference below
8 is recommended [4]. A radius range of [16-19] thus seems
appropriate and a value of R = 18 will in general provide good
results. In our experiments we have chosen in the range [16-19]
the radius such that n ∗Edata(Iλ , I) is the minimum, where n is
the number of colors in the palette and Edata(Iλ , I) is defined in
Equation 1.

Implementation
A typical map is about 64 cm by 40 cm. Recommended scan

resolution varies between 300 to 600 samples per inch, so that a

scanned map can be as large as 10078 pixels by 6299 pixels. A
512 by 512 sample could be too small to have the chance to get
all pixel colors, while four of them will most probably do. We
therefore recommand to extract four random cuts of 512x512 and
on each of them perform the following process:

convert to L*a*b*

compute gaussian gradient of L*

build set A= pixels with norm<1.8

(mainly pixels in uniform areas)

build set E= non-max suppression of norm

extract palette1 using median-shift on A

perform line extraction on L*

build set F= non-max suppression of line norm

(mainly pixels located on features)

build set SF=subset F

= local max of L* and saturation

not present in E (optionnal)

(less subject to anti-aliaising)

classify pixels of A and SF with distance <R/2

build set U= unclassified pixels

extract palette2 using median-shift on U

merge the two palettes= palette_cut

Once the palette of each cut is obtained, each color of the palette
gets a weight corresponding to the number of non-edge pixels
assigned to it. A new median-shift is then made on the whole set
of colors.

Regularization
We start with the labelling corresponding to the assignement

of each pixel to the nearest palette color and update the labelling
so as to minimize an energy function E(Iλ ) defined as the sum
of two terms.

E(Iλ ) = Edata(Iλ , I)+βEconstraint(Iλ )

The first term called data term expresses the cost of assigning a
color label λ to a pixel p.

Edata(Iλ , I) = ∑
p

E1(λp) (1)

where E1 expresses the cost of assigning to the pixel p the color
of λp in the color palette. The most obvious choice for E1 is to
consider the distance between these two colors. As for the palette
extraction phase, the considered distance is the maximum of the
Euclidian and the CMC color difference.

The second term gives the cost of assigning to the pixel p
the color index λp given the labelling of its neighborhood:

Econstraint(Iλ , I) = ∑
p

E2(λp,ℵ(p))

where E2 expresses the cost of some specific local configuration
defined in ℵ(p), the neighborhood of p.

The simplest choice for E1 is a function that impose a pe-
nality for neighbouring pixels having different color labels:

E2(λp,ℵ(p)) = ∑
q∈ℵ(p)

V (λp,λq)

where V (λ ,λq) = { 1 if λ �= λq

0 otherwise
and ℵ(p) is the set of 4 or

8 neighbouring pixels of p.
Note that this choice of E2 favours more regions than lines,

and will avoid to keep isolated points unless E1 is very low.
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Figure 3. Optimum palette extraction of a low saturated image. Two zooms are overlaid (middle). Results on these zooms of the proposed palettization and

of the GIMP palettization are shown on the left and right respectively. Below the images: palettes extracted by all methods.

GIMP n=23

GIMP n=23

Selection R=18
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Figure 4. Optimum palette extraction of a saturated image. Two zooms are overlaid (middle). Results on these zooms of the proposed palettization and of

the GIMP palettization are shown on the left and right respectively. Below the images: palettes extracted by all methods.
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The parameter β controls how much the constraints should
be considered in the optimal solution. A good regularization de-
pends on the appropriate choice of E1, E2 and β . The simplest
optimization method for the energy function E(Iλ ) is an exhaus-
tive search procedure through all possible label value λ ∈L and
for all the pixels p in the image I. An alternative is to use simulat-
ing annealing, a stochastic optimization procedure, which avoids
to be trapped in local minima.

Constraining the edge pixels to have a label present among
its non-edge neighbours only will reduce further the complexity
of the resulting image.

Results
We have applied the optimum palette extraction to several

maps and a photography of the Macbeth color chart [14], using
the proposed strategy and compared it the Vector Magic color ex-
tractor, the GIMP and CS3 (Photoshop) palette reduction tools,
through their “Image>mode>indexed” command, and assigning
the number of colors. In GIMP, this number is indicative: we
have observed sometimes one class more or less. CS3 offers
three different method: perceptual, selective and adaptive. In all
experiments we have used the “perceptual” as it was providing a
better qualitative palette. Vector Magic color extractor allows a
maximum of 12 colors which is not sufficient for some images.
These methods have been chosen because they were performing
better than other palette reduction tools (see [12]). Despite the
fact that they were not designed for this specific task, they per-
form it very well! The two-phases median-shift is used either
with a selection of non-edge pixels, or with all non-edge pixels
as described above. Tests were performed on 512x512 images.

The qualitative test is based on the visual comparison of the
extracted palettes and of the images after palettization. Figure 3
shows part of a map and two zooms showing the effect of alias-
ing (up-middle and bottom-middle). The results of the two best
methods on these zooms are shown: GIMP with n=7 (right) and
the proposed method with R = 18 (left). Notice on the bottom
zoom that GIMP is unable to discriminate the green from the
beige of the shadow, as a consequence, the green of the palette
is more brownish than what it should be. For all the other meth-
ods, only the palettes are displayed. Note that all these methods
hardly identify some green in the image.

Another test on a more saturated image can be seen on Fig-
ure 4. Again, part of the map is shown as background with two
zooms overlaid in the middle of the image; results of the pro-
posed method and of the GIMP method are overlaid at the left
and the right of these zooms respectivelly. Note that the blueish
green and the violet seen in the upper zoom are only detected
by the two-phases median-shift. The yellow green present in the
lower zoom is also detected by that algorithm while GIMP is un-
able to get this color in its palette. Note that the palette is quite
stable when R changes from one unit, and that the palette ex-
tracted using a reduced number of pixels is quite similar with
the one that considers all non-edge pixels, but is about half time
faster.

The quantitative test is based on the distance between the
original image and the color-reduced image as in Equation1, di-
vided by the total number of pixels N:

D(Iλ , I) =
∑p E1(λp)

N

For the computation of E1, the maximum of the Euclidean dis-
tance and the CMC color difference has been considered. The
results for five different images are shown in table 1. We have

Figure 5. Regularization of the labeled low-saturated image

Selection R=18

Selection R=18

Figure 6. Regularization of the labeled saturated image

chosen this distance because we consider that the Euclidian dis-
tance in the Lab space was not close enough to human percep-
tion.

Except on the Ouzdha image, the two-phases median shift
algorithm performs better than the other two algorithms with
respect to this distance, but, even if the proposed distance is
better than the Euclidian distance, it does still not reflect the
percieved distances between the images.

images n colors two phases GIMP CS3
mapa4 7 6.9756 7.58052 7.5362
Ouzdha 11 16.0243 11.2303 15.0082
Chart 28 2.6226 2.63489 8.40815
mapa8 26 5.00196 5.40047 (27) 5.77837
Pristina 12 6.11736 7.71247 6.84294
Virton 22 9.68114 11.2541 (23) 11.0182

Table 1: Mean error for several images and algorithms

The second phase involves a regularization. This process
drastically reduces the number of connected components, thus
simplifying the image. The result of the full process applied to
the images shown in Figure 3 and 4 is shown in Figure 5 and
Figure 6. As expected this regularization process favors homo-
geneous regions and thus may delete some local features.
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Summary and discussion
The optimum palette extraction using the median-shift in

the Lab color space with the maximum of the Euclidean and the
CMC distance in a two-step strategy gives excellent results both
qualitatively and quantitatively. The quantitative tests do not
reflect the perception, so that another distance measure should
be proposed. We have compared the method with Photoshop
CS3, GIMP palette reduction tools, and, when possible, with the
Vector Magic color finder on some maps and scanned graphics.
A better regularization considering the nature of the underlying
pixel could simplify further the image. The pixels of similar la-
bels must still be connected in order to identify all the vectors.
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