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Abstract
We propose a new algorithm for multispectral image denois-

ing. The algorithm is based on the state-of-the-art Block Match-
ing 3-D �lter. For each �reference� 3-D block of multispectral
data (sub-array of pixels from spatial and spectral locations) we
�nd similar 3-D blocks using block matching and group them
together to form a set of 4-D groups of pixels in spatial (2-D),
spectral (1-D) and �temporally matched� (1-D) directions. Each
of these groups is transformed using 4-D separable transforms
formed by a �xed 2-D transform in spatial coordinates, a �xed 1-
D transform in �temporal� coordinate, and 1-D PCA transform
in spectral coordinates. Denoising is performed by shrinking
these 4-D spectral components, applying an inverse 4-D trans-
form to obtain estimates for all 4-D blocks and aggregating all
estimates together. The effectiveness of the proposed approach
is demonstrated on the denoising of real images captured with
multispectral camera.

Introduction
Multispectral (MS) images consist of spatial maps of inten-

sity variations across a large number of spectral bands or wave-
lengths; alternatively, they can be thought of as a measurement of
the spectrum of light transmitted or re�ected from each spatial lo-
cation in a scene. MS imaging is used in a variety of applications
such as remote sensing, astronomical imaging, and �uorescence
microscopy.

A naive approach to denoising of MS images assumes fus-
ing/aggregation of the multispectral images denoised indepen-
dently. An alternative way is to process the full set of the mul-
tispectral data jointly. This approach is a much more ef�cient
and productive, potentially allowing to reveal details and features
which are practically invisible in each of the spectrum compo-
nents considered separately.

The block-matching and 3-D �ltering (BM3D) algorithm
[3] is currently one of the most powerful and effective image
denoising procedures [10], [9],[13]. It exploits a speci�c non-
local image modeling through the procedures of grouping and
collaborative �ltering. Grouping �nds mutually similar 2-D im-
age blocks and stacks them together in 3-D arrays. Collaborative
�ltering produces individual estimates of all grouped blocks by
�ltering them jointly, through transform-domain shrinkage of the
3-D arrays (groups). In doing so, BM3D relies both on nonlo-
cal and local characteristics of natural images, namely the abun-
dance of mutually similar patches and the fact that image data
is locally highly correlated. If these characteristics are veri�ed,
the group enjoys correlation in all three dimensions and a sparse
representation of the true signal is obtained by applying a decor-
relating 3-D transform on the group. The effectiveness of the
subsequent shrinkage depends on the sparsity of the true signal;
i.e. the true signal can be better separated from the noise when
its energy is compactly represented in the 3-D transform domain.

In the case of multispectral images, additional sparsi�cation

of the image representation can be achieved by decorrelation of
spectral components. For example, the Color-BM3D (CBM3D)
algorithm [2, 3] designed for �ltering natural RGB images fol-
lows the conventional approach based on a �xed luminance-
chrominance color transformation applied to the whole RGB data
and a particular special grouping-constraint to exploit the struc-
tural self-similarity shared by the three color components.

It must be however observed that while for natural RGB im-
ages the established opponent or YCbCr color transformations
already provide near-optimal decorrelation of the color data,
when one considers MS data at least two problems arise. First,
there is no universal spectral decorrelating transform that can be
considered optimal for generic MS data: as opposed to RGB
imaging, MS imaging encompasses a wide range of imaging
modalities and sensors technologies. Second, due to the potential
high number of spectral components, a global spectral transfor-
mation may not be able to capture the heterogeneous correlation
models between different components at different locations in the
image.

This calls for a locally adaptive data-driven spectral decor-
relation. A very natural approach to this problem, followed by
many authors [11], [4], [12], [1], is to rely on the principal com-
ponent analysis (PCA) to obtain a data-driven decorrelation of
the spectral components. We especially wish to mention the work
by Cagnazzo et al. [1], where the importance of localization of
such PCA has been emphasized.

In this paper we propose an extension of the Color-BM3D
algorithm for MS image denoising where spectral decorrelation
is performed in a nonlocal spatially adaptive manner. Unlike in
Color-BM3D, we process all spectral components jointly, con-
sidering 3-D image blocks and the correspondent 4-D groups.
For each group, we calculate a PCA basis providing optimal
spectral decorrelation. The �nal 4-D transform is performed as a
separable composition of the spectral and 3-D spatial/interblock
decorrelating transforms. We denote this new algorithm as
MSPCA-BM3D.

Another important issue in MS image denoising is the high
heterogeneity of the noise: multispectral images are typically
corrupted by non-stationary noises with different noise levels for
the different channels. This situation is obvious in case of aer-
ial imagery, where the atmospheric disturbance appears only at
certain wavelengths, or in CCD-based MS systems, where the
extreme spectral bands are acquired near the operational limits
of the sensor, thus where its ef�ciency is particularly low. Even
when restricted to an individual spectral band, the noise can-
not be assumed as additive identically and independently distrib-
uted (i.i.d.), because the sensor data is naturally heteroskedas-
tic signal-dependent (often following Poissonian distributions).
Thus, in practice, the noise variance depends both on the un-
known signal and on the spectral band.

The applicability of MSPCA-BM3D to heteroskedastic data
that follows different noise models across the different spec-
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Figure 1. Flowchart of the proposed MSPCA-BM3D algorithm.

tral bands is ensured by the noise-estimation and variance-
stabilization framework developed in [7] and [6]. In this way,
we arrive to a denoising procedure which is entirely automatic
and that can be applied to data without need of prior noise char-
acterization.

We demonstrate the effectiveness of the proposed MSPCA-
BM3D algorithm on images from the Multispectral database1
[8], [5]. Each image in this database contains 31 spectral com-
ponents taken in the wavelength range of 400-700 nm, at 10-nm
steps. For a comparison we also provide results of Color-BM3D
algorithm adapted for MS data, where the spectral decorrelation
is performed through a global PCA decomposition.

Observation Model
Let x be a 2-D spatial coordinate de�ned on the image do-

main X � Z�Z, k 2 f1; :::;Kg be an index specifying the spec-
tral component, and y(x;k) : X �K ! R the unknown original
noise-free K-spectral image. We consider the following observa-
tion model

z(x;k) = y(x;k)+σ (y(x;k) ;k)ξ (x;k) ; (1)

where z(x;k) is the observed noisy image, ξ (x;k) : X �K! R;
E fξ (x;k)g= 0; varfξ (x;k)g= 1 are independent (both in x and
k) random variables, and σ (�;k) is a deterministic function of y
describing the dependence of the standard deviation of the noise
from the signal.

In the following section we �rst present the denoising
algorithm under the simplistic assumptions of additive white
Gaussian noise (AWGN) for which

σ (y(x;k))ξ (x;k) =N
�
0;σ20

�
:

Further, we show how the general model given by (1) can be
transformed to the AWGN case through variance stabilization.

MSPCA-BM3D Algorithm
The MSPCA-BM3D algorithm can be interpreted as an ex-

tension of the BM3D algorithm from 2-D to 3-D imaging. De-
tailed description of BM3D algorithm for 2-D imaging can be
found in [3]. Here we outline the key steps of the proposed al-
gorithm and pay special attention to the main contribution of this
paper: the nonlocal PCA spectral decorrelation procedure.

It is assumed that a multispectral image z(x;k) is repre-
sented as a 3-D array, where sections across the third dimension
are 2-D images of the individual spectral components z(�;k). We
de�ne 3-D blocks as a subarrays of size Ns�Ns�K, where Ns
and K are respectively spatial and spectral sizes of the block. We
say that the block is located at x0, if x0 is the coordinate of left
upper edge of the 3-D block.

1http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm

Algorithm outline
For each spatial position x0 in the image domain X , select

the corresponding noisy 3-D block as the reference one. For each
reference block perform the following steps:

1. Using block matching, �nd 3-D blocks similar to the refer-
ence one and stack them into a 4-D array (group).

2. Using PCA, �nd an orthonormal transform providing opti-
mal spectral decorrelation for the group.

3. Apply a 4-D transform to the formed array by subse-
quently applying: a) spectral decorrelating transform along
the third (spectral) dimension, b) 2-D spatial decorrelating
transform (e.g., DCT or wavelet) along the �rst and second
dimensions, c) 1-D orthogonal transform along the fourth
dimension to perform interblock decorrelation.

4. Denoise the data by shrinkage (hard thresholding or empir-
ical Wiener �ltering) of the obtained 4-D transform coef�-
cients.

5. Apply the inverse 4-D transformation to obtain estimates
for all grouped blocks.

6. Return the obtained block estimates to their original loca-
tions.

Compute the estimate of the true image by weighted aver-
aging of all obtained blockwise estimates that are overlapping.

The diagram of the algorithm is presented in Fig. 1.

Nonlocal PCA spectral decorrelation
The input of Step 2 is the group of Ngr blocks of Ns�Ns�K

size. For each spatial location x0 of each block we extract the
corresponding spectral values z(x0; �) and put them into a 1-D
column vector~vi = [ z(x0;1) z(x0;2) : : : z(x0;K) ]T ; i=
1; : : : ;Ntotal, where Ntotal = Ns�Ns�Ngr is the total number of
such vectors. A K �K sample second-moment matrix is then
computed as

C= [ ~v1 ~v2 : : : ~vNtotal ][ ~v1 ~v2 : : : ~vNtotal ]
T (2)

and subsequently its eigenvalue decomposition yields

C =USUT

where U is orthonormal matrix and S is a diagonal matrix con-
taining eigenvalues ordered by magnitude.

The matrix U de�nes the PCA transformation for decorre-
lation of the spectral components of the blocks in the group.

Two-stage implementation
Similarly to [3] and [2], the above algorithm is implemented

as a two-stage procedure. On the �rst stage, the shrinkage is per-
formed by hard thresholding and the search for similar blocks is
performed within the noisy image. On the second stage, we uti-
lize the estimate image from �rst stage in the following manner:
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� the search for similar blocks is done within the estimate
image,

� the shrinkage is performed by empirical Wiener �ltering.

The improvement contributed by the second stage can be
justi�ed as follows. Because the noise has been attenuated in the
�ltered images, the block-matching operations can be produced
more accurately. It results in sparser representations of the 4-D
group spectra. In addition, the empirical Wiener �ltering is much
more effective than hard thresholding when the output of the �rst
stage is used as reference signal in the empirical Wiener �lter.

Denoising in the case of general noise model
The algorithm described above cannot be directly applied

to data given by the general model (1), where the noise variance
is signal dependent and varies across the spectral components.
To overcome this problem we follow the variance-stabilization
scheme developed in [6].

First, for each spectral component k, we estimate a standard-
deviation curve σ (�;k) as a function of the image intensity. Sec-
ond, for each such curve a speci�c (nonparametric) variance-
stabilizing transformation is derived. Applying these trans-
formations to the corresponding spectral components gives a
transformed MS image where the noise can be treated as ho-
moskedastic. Then, the MSPCA-BM3D algorithm proposed
for homoskedastic noise is applicable. After denoising, the
respective inverse variance-stabilizing transformation and bias-
compensation procedures are applied to produce the �nal image
estimate.

Note that for the purpose of this work, the effect of possible
clipping discussed in [6] has been ignored.

Experiments
We demonstrate the effectiveness of the proposed MSPCA-

BM3D algorithm on images from the Multispectral database2
[8], [5]. Each image in this database contains 31 spectral com-
ponents taken in the wavelength range of 400-700 nm, at 10-nm
steps. Not going into the details of the acquisition system used
to obtain these images, we just mention that the spectral compo-
nents are �nally recorded with a CCD sensor. This allows us to
use the CCD/CMOS sensor noise model [7]:

σ (y(x;k) ;k) =
p
aky(x;k)+bk; k = 1; : : : ;K

where ak 2 R+ and bk 2 R are some constants depending on the
sensor's speci�c characteristics and on the particular acquisition
settings.

For each spectral component, the parameters ak and bk are
estimated and the homomorphic transformations for variance-
stabilization and its inversion (including bias-compensation) are
produced using methods from [7] and [6], as implemented in the
ClipPoisGaus Toolbox3.

To provide a comparison, we also performed denoising us-
ing the Color-BM3D algorithm adapted for MS data, where the
spectral decorrelation is obtained through a global PCA decom-
position. In Fig. 2 and Fig. 3 we show results obtained by both
methods, together with the original noisy images. We can see
that the nonlocal groupwise spectral decorrelation indeed allows
to obtain better results, revealing details that is not possible to
restore by global decorrelation. In particular this is visible on the
�rst, most noisy, spectral component.

2http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
3http://www.cs.tut.�/~foi/sensornoise.html

Conclusions
We have introduced a new algorithm for multispectral im-

age denoising. Following the nonlocal image processing para-
digm, a spatially adaptive spectral decorrelation is performed for
each group of similar bocks. Thanks to the grouping, the PCA
transform can be calculated robustly, directly from the noisy im-
age. Effective spectral decorrelation allows to achieve higher
sparsi�cation of the data, which results in better denoising. Ex-
periments show superiority of the proposed approach over the
method using global spectral decorrelation.
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Figure 2. Results of multispectral image denoising of the test image number 12 from the database [8]. From top to bottom: MS image (sRGB values
rendered under a neutral daylight, D65), fragment of the 1st spectral component, different fragment of 31st spectral component. From left to right: noisy
image, denoised by multispectral modi�cation of CBM3D and denoised by proposed algorithm.
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Figure 3. Results of multispectral image denoising of the test image number 18 from the database [8]. From top to bottom: MS image (sRGB values
rendered under a neutral daylight, D65), fragment of the 1st spectral component, different fragment of 31st spectral component. From left to right: noisy
image, denoised by multispectral modi�cation of CBM3D and denoised by proposed algorithm.
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