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Abstract
In this work, a two-step technique for constructing a super-

resolution (SR) image from a single multi-valued low-resolution
(LR) input image is proposed. The problem of SR is treated from
the perspective of image geometry-oriented interpolation. The
first step consists of computing the image geometry of the LR im-
age by using the grouplet transform. Having well represented the
geometry of each color channel in the LR image, we propose a
grouplet-based structure tensor whose role is to couple the ge-
ometrical information of the different image color components.
In a second step, a functional is defined on the multispectral
geometry defined by this structure tensor. The minimization of
this functional insures the synthesize of the SR image. The pro-
posed super-resolution algorithm outperforms the state-of-the-
art methods in terms of visual quality of the interpolated image.

Introduction
Image super-resolution is the process of increasing the res-

olution of a given image [2, 3, 4]. This process has also been
referred to in the literature as resolution enhancement. One such
application to image super-resolution can be found in stream-
ing video websites, which often store video at low resolutions
for various reasons. The problem is that users often wish to ex-
pand the size of the video to watch at full screen with resolutions
of 1024× 768 or higher, and this process requires that the im-
ages be interpolated to a higher resolution. Another application
comes from the emergence of digital cinema, where filmmak-
ers are increasingly turning towards an all-digital solution, from
image capture to postproduction and projection. Due to its fairly
recent appearance, the digital cinema chain still suffers from lim-
itations which can hamper the productivity and creativity of cin-
ematographers and production companies. One of these limita-
tions is that the cameras used for high resolutions are expensive
and the data files they produce are large. Because of this, studios
may chose to capture some sequences at lower resolution (2K
for example). These sequences can later be interpolated to 4K
sequences by using a super-resolution technique and projected in
higher resolution display devices.
Increasing the resolution of the imaging sensor is clearly one way
to increase the resolution of the acquired images. This solution,
however, may not be feasible due to the increased associated cost
and the fact that the shot noise increases during acquisition as the
pixel size becomes smaller. Furthermore, increasing the chip size
to accommodate the larger number of pixels increases the capac-
itance, which in tern reduces the data transfer rate. Therefore,
image processing techniques, like the ones described in this pa-
per, provide a clear alternative for increasing the resolution of the
acquired images.
There are various possible models for performing resolution en-
hancement. These models can be grouped in three categories:
interpolation-based methods, reconstruction-based methods, and
learning-based methods.

The most common methods used in practice are the bicubic and
bilinear-based interpolation methods[5] [6], which require only
a small amount of computation. However, these simple methods
often produce images with various artefacts along object bound-
aries, including aliasing, blurring, and zigzagging edges. The re-
construction based methods [8] [7] enforce a reconstruction con-
straint which requires that the smoothed and down-sampled ver-
sion of the high resolution (HR) image should be close to the LR
image. The learning based methods [9] [10] ”hallucinate” high
frequency details from a training set of HR/LR image pairs. The
learning based approach highly relies on the similarity between
the training set and the test set. It is still unclear how many train-
ing examples are sufficient for the generic images.
Meanwhile, various algorithms have been proposed to improve
the interpolation-based approaches and reduce edge artifacts,
aiming at obtaining images with regularity (i.e. smoothness)
along edges. Jensen and Anastassiou [11] propose to estimate
the orientation of each edge in the image by using projections
onto an orthonormal basis and the interpolation process is mod-
ified to avoid interpolating across the edge. Allebach and Wong
[12] propose to use an estimate of the high-resolution edge map
to iteratively correct the interpolated pixels. Li and Orchard
[5] propose a statistical estimation method that tunes interpola-
tion coefficients according to local edge structures. While this
method produces good results, its computational complexity is
prohibitive due to the large window size used to estimate local
covariances. Improvements for the interpolation methods have
also been proposed in [13], where partial differential equations
(PDE) are used to satisfy smoothness and orientation constraints.
Other proposed approaches perform interpolation in a transform
(e.g. wavelet) domain [14] [15]. These algorithms assume the
low-resolution image to be the lowpass output of the wavelet
transform and make use of dependence across wavelet scales to
predict the ”missing” coefficients in the more detailed scales.
The above listed SR methods have been designed to increase
the resolution of a single channel (monochromatic) image. To
date, there is very little work addressing the problem of color
SR. The typical solution involves applying monochromatic SR
algorithms to each of the color channels independently [16] [17],
while using the color information to improve the accuracy. An-
other approach is transforming the problem to a different color
space, where chrominance layers are separated from luminance,
and SR is applied only to the luminance channel [18]. Both of
these methods are sub-optimal as they do not fully exploit the
correlation across the color bands. Other methods using learning
based techniques have been proposed for color image interpola-
tion [19], yet results still depend on the training phase and the
used dataset.
In this paper, we propose a novel variational color image interpo-
lation algorithm based on the new grouplet transform [20] which
provides an efficient multiscale geometric representation for nat-
ural images. The grouplet transform was proposed by Mallat as a
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directional multiresolution transform that can efficiently capture
and represent boundaries and textures in natural images. Further-
more, it allows to define a geometrical flow that can be used to
direct our interpolation technique. Having well represented the
geometry of each color channel by using geometrical grouplets,
we propose a grouplet-based structure tensor whose role is to
couple the geometrical information of the different image color
components. Then, a functional is defined on the multispectral
geometry defined by this structure tensor. The minimization of
this functional insures the synthesize of the SR image.
The rest of the paper is organized as follows. Section 2 presents
the grouplet transform and provides motivation for its use in
our algorithm. In Section 3, we present our variational super-
resolution algorithm. We report the results of our experiments in
Section 4 and conclude the paper in Section 5.

Geometrical Grouplets
Geometrical grouplets have been recently introduced by

Mallat in [20]. They are constructed with association fields that
group points to take advantage of the geometrical image regular-
ities. We only present here a brief review of the Grouplet trans-
form. The reader can refer to [20] for a full detailed description
of the Grouplet transform.
Because they are constructed with the spirit of the ”Gestalt” psy-
chophysic school, the grouplets construct the geometry of the
image with grouping processes which define a multiscale asso-
ciation field. This field define the different orientations even for
the fine structures in the images.
Then, an orthogonal multiscale grouping is implemented with
a weighted Haar lifting applied successively to points that are
grouped by the association field. The associated field is com-
puted by first performing group matching on the 2D wavelet
transform coefficients of the image. The role of this field is to
group together points that have similar neighborhoods in order
to exploit the geometry of the image. The computation of the
association field is performed as follows: First the image grid Ω
is divided into two subgrids Ωeven (even columns) and Ωodd (odd
columns). Then, each point in the odd subgrid is associated to
a point in the even subgrid according to a block matching crite-
rion. This can be achieved by searching for each pixel m in Ωodd
for a best matching pixel m̃ in Ωeven. The search is performed
on the neighborhood of m denoted by N(m) using the following
equation:

m̃ = argmin
p∈N(m)

|a [m]−a [m+ m̃]|k , k = 1 or k = 2 (1)

where a is the corresponding wavelet coefficient.
We denote by A j[m] the association field that stores a displace-
ment from m ∈ Ωodd to an image point m̃ ∈ Ωeven at a wavelet
scale j.
Figure 1 shows an example of the association field computed for
’Lenna’ image. As we can see, the block matching (1) com-
putes regular multiscale association fields with directions along
which the image is smoothly varying. Once the association field
is obtained, the grouplet coefficients are obtained by performing
a weighted multiscale Haar transform on the associated wavelet
coefficients.
For scales 2 j that increase from 1 to 2J , the successive groupings
are performed as follows:
each point m is associated to another point m = m̃ +A j [m̃]. The
grouplet transform computes a normalized difference between
associated averages:

d j [m̃] = (h [m̃]−h [m])

√
s [m]s [m̃]√

s [m]+ s [m̃]
(2)

Figure 1. Association field of ’lenna’ image

A weighted average is then defined by:

h̃ =
s [m]h [m]+ s [m̃]h [m̃]

s [m]+ s [m̃]
(3)

where

h [m] = h[2m]+h[2m+1]
2

The averaging size is updated by adding the averaging size of the
two averaged points

s̃ = s [m]+ s [m̃] (4)

Compared to other geometrical representations, such as bandelet
or curvelet transforms, the grouplet transform is more flexible
since the association fields can deviate from the integral lines in
order to converge to singularity points such as junctions or cross-
ings. Fine image structures are consequently well represented.
Therefore, the interpolation of the represented information in the
”missing” (or to be synthesized) pixels of the SR image follow-
ing the directions of the association field yields to a precise syn-
thesis of the SR image. We present in the following section this
interpolation technique.

Grouplet-Based Super-Resolution Tech-
nique

Given that the image geometry is efficiently represented and
characterized by the multiscale association field, we present in
this section an interpolation method oriented by the captured ge-
ometry. First, we present our grouplet-based structure tensor and
then, we describe our interpolation technique.

Grouplet-based structure tensor
Extending differential-based operations to color or multi-

valued images is hindered by the multi-channel nature of color
images. The derivatives in different channels can point in oppo-
site directions, hence cancelation might occur by simple addition.
The solution to this problem is given by the structure tensor for
which opposing vectors reinforce each other.
In [1] Di Zenzo pointed out that the correct method to com-
bine the first order derivative structure is by using a local ten-
sor. Analysis of the shape of the tensor leads to an orienta-
tion and a gradient norm estimate. For a multichannel image

I =
(
I1, I2, ....., In

)T
the structure tensor is given by

M =
(

IT
x Ix IT

x Iy

IT
y Ix IT

y Iy

)
(5)
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The multichannel structure tensor describes the 2D first or-
der differential structure at a certain point in the image.
The motivation of this work is to make the interpolation oriented
by the optimal geometry direction captured by the grouplet trans-
form in order to synthesize fine structures for the SR image. For
that purpose, a multiscale multistructure grouplet-oriented ten-
sor for an m-valued (m = 3 for color images and m = 1 for gray
images) image is defined by:

G j =

⎡
⎢⎢⎣

m
∑

i=1

(
∂
∂ x h̃ j

i cosθi

)2 m
∑

i=1

∂
∂ x h̃ j

i cosθi
∂
∂ y h̃ j

i sinθi

m
∑

i=1

∂
∂ x h̃ j

i cosθi
∂
∂ y h̃ j

i sinθi
m
∑

i=1

(
∂
∂ y h̃ j

i sinθi

)2

⎤
⎥⎥⎦

f or i = 1,2, .....m

(6)

The norm of G j is defined in terms of its eigenvalues λ+ and
λ−,

∣∣∣∣G j
∣∣∣∣ =√λ+ +λ−. The angle θi represents the angle of

the direction of the grouplet association field. j is the scale of the
grouplet transform. g j

i is the corresponding grouplet coefficient.
i designates the image channel (i = 1,2, . . . ,m). Figure 2 shows
the norm of the grouplet-based structure tensor defined in (6) of
the ’Lenna’ image.

(a) Lenna Image (b) Norm of the structure tensor
defined in (6)

Figure 2. Norm of the grouplet-based structure tensor

Until now, we have characterized edges and the geometrical
flow (the association field) of the image. We present in the fol-
lowing subsection our super-resolution variational approach that
is oriented by these two geometric features.

Super-Resolution
We formulate our interpolation approach as the following

variational problem,

Ĩi = min
Ii

(∫
Ω
(‖∇Ii (x,y)‖+

∥∥∇G j (x,y)
∥∥

+ λ
∥∥G j (x,y)

∥∥)dΩ
) (7)

subjected to the following constraints,

I (xsΔ,ysΔ) = I′ (x,y)
0 ≤ x ≤ ⌊ w

sΔ
⌋

0 ≤ y ≤
⌊

h
sΔ

⌋ (8)

where I′ (x,y) is the original image before interpolation, Δ is the
grid size of the upsampled image, w and h are the width and the
height of the image respectively and s is the scaling factor.
∇̃ is the directional gradient with respect to the grouplet geomet-
ric direction θ and λ is a constant.
The first term in (7) is a marginal regularization term oriented by
the directions of the geometrical flow defined by the association
fields of the grouplet transform. The second is a multispectral
regularization term while the third is edge-driven, which aims at
the orientation of the interpolation process to the orientation of

the color edges. In fact, the norm
∥∥G j (x,y)

∥∥ is a weighting fac-
tor such that more influence is given to points where the color
gradient is high in the interpolation process.
The Euler equation of (7) is

∇̃·
(

∇Ii (x,y)
‖∇Ii (x,y)‖

)
+∇̃ ·

(
∇
∥∥G j (x,y)

∥∥
‖∇Ii (x,y)‖

)
+λ

∇̃
∥∥G j (x,y)

∥∥
‖∇Ii (x,y)‖ = 0(9)

By expanding (9) we obtain after simplification,

Iixx cosθ + Iiyy sinθ −(Iixy + Iiyx

)
cosθ sinθ+∥∥G j (x,y)

∥∥
xx cosθ +

∥∥G j (x,y)
∥∥

yy sinθ+
λ
∥∥G j (x,y)

∥∥
x cosθ+ λ

∥∥G j (x,y)
∥∥

y sinθ = 0
(10)

where
∥∥G j (x,y)

∥∥
x and

∥∥G j (x,y)
∥∥

y are, respectively, the

horizontal and vertical derivatives of the norm matrix
∥∥G j (x,y)

∥∥
computed at a scale j to extract the horizontal and vertical details
of the color image.
Equation (10), which yields to a factor-of-two interpolation
scheme, is applied to each color band i and it can be easily dis-
cretized by using the following two equations:

Iixx (xΔ,yΔ) ≈ [Ii (x−1,y)+ Ii (x+1,y)−2Ii (x,y)]
/

Δ2

Iiyy (xΔ,yΔ) ≈ [Ii (x,y−1)+ Ii (x,y+1)−2Ii (x,y)]
/

Δ2

Iixy (xΔ,yΔ) ≈ [Ii (x+1,y+1)+ Ii (x−1,y−1)−
Ii (x−1,y+1) −Ii (x+1,y−1)]

/
4Δ2

(11)

Ii (x,y−1) ≈ [Ii (x+1,y−1)+ Ii (x−1,y−1)]
/

2
Ii (x,y+1) ≈ [Ii (x+1,y+1)+ Ii (x−1,y+1)]

/
2

Ii (x−1,y) ≈ [Ii (x−1,y−1)+ Ii (x−1,y+1)]
/

2
Ii (x+1,y) ≈ [Ii (x+1,y−1)+ Ii (x+1,y+1)]

/
2

(12)

By using equation (10) and solving for I (xΔ,yΔ) (λ is set
equal to -2 to eliminate the term G j(x,y) which is unknown), we
obtain the final interpolating scheme on the upsampled grid (for
simplicity I(x,y) is used to denote I(xΔ,yΔ)):

Ii (x,y) =
(

cosθi+sinθi−4cosθi sinθi
4(cosθi+sinθi)

)
(Ii (x−1,y−1) +

Ii (x+1,y+1))+
(

cosθi+sinθi+4cosθi sinθi
4(cosθi+sinθi)

)
(Ii (x−1,y+1) +

Ii (x+1,y−1))+ 1
4

∥∥G j (x−1,y−1)
∥∥+(

cosθi+3sinθi
4(cosθi+sinθi)

)∥∥G j (x−1,y+1)
∥∥+(

sinθi−cosθi
4(cosθi+sinθi)

)∥∥G j (x+1,y−1)
∥∥+(

3sinθi−cosθi
4(cosθi+sinθi)

)∥∥G j (x+1,y+1)
∥∥

(13)

where

θi = 1
4 (θi (x−1,y−1)+θi (x+1,y−1))
+(θi (x−1,y+1)+θi (x+1,y+1))

The process can be iterated with the resolution increased by
a factor of two on each iteration. We represent in the following
section some experimental results.

Experimental Results
We propose to evaluate subjectively (panel of observers)

and objectively (metrics) the results obtained by the proposed al-
gorithm and compare them with the results obtained by the state-
of-the-art approaches.
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Subjective evaluation
Subjective experiments consist in asking a panel of subjects

to watch a set of images or video sequences and to score their
quality. The main output of these tests is the Mean Opinion Score
(MOS) computed using the values assigned by the observer. In
order to obtain meaningful and useful values of MOS, the ex-
periment need to be constructed carefully by selecting rigorously
the test material and defining scrupulously the subjective evalua-
tion procedure. The most important recommendations have been
published by ITU [21, 22] or described in VQEG test-plans [23].
Figure 3 gives an overview of the used test material.

-a- -b- -c-

-d- -e- -f-
Figure 3. Overview of the test material. a-Lena, b- Lena (grayscale), c-

Lighthouse, d- Iris, e-Caster and f-Haifa.

All images described above have been downsampled by a
ratio of 2 in width and height. Then it has been provided as an
input of the super-resolution algorithms. This process allows to
compare algorithms with regards to the original image.

Environment setup
The subjective experiments took place in a normalized test-

room built with respect to ITU standards [21] (cf. figure 4). It
is very important to control accurately the environment setup in
order to ensure the repeatability of the experiments and to be able
to compare results between different test locations.

Figure 4. A Synthetized view of the used test room

Only one observer per display has been admitted during the
test session. This latter is seated at a distance between 2H and
4H; H being the height of the displayed image. His vision is
checked for acuity and color blindness. Table 1 provides the most
important features of the used display. The ambient lighting of
the test-room has been chosen with a color temperature of 6500
K.

Display characteristics for the subjective evaluation

Type Dell 3008WFP
Diagonal size 30 inches

Resolution 2560 × 1600 (native)
Calibration tool EyeOne Display 2

Gamut sRGB
White point D65
Brightness 370 cd/m2

Black level lowest

Subjective evaluation procedure
In order to compare our SR approach with other super-

resolution algorithms from the point of view of subjective evalu-
ation, we used a single stimulus approach. This means that pro-
cessed images are scored without any comparison with the origi-
nal image (reference image). This latter is used as a result image
and is scored in order to study the reliability and accuracy of the
observer results.
The test session starts by a training allowing to show to the ob-
server the types of degradation and the way to score impaired
images. The results for these items are not registered by the eval-
uation software but the subject is not told about this. Then, each
image is displayed for 10 seconds, three times, to the observer to
stabilize his judgment. At the end of each presentation, a neutral
gray is displayed with a GUI containing a discrete scale as shown
in figure 5. This scale corresponding to a quality range from bad
to excellent ([0 - 5]) allows to affect a score to each image. Of
course, numbers shown on figure 5 are given here for illustration
and do not exist on the GUI.

Figure 5. Discrete quality scale used to score images during the test

Each subjective experiment is composed of 198 stimulus: 6
images × 11 (10 algorithms + reference image) × 3 repetitions
in addition to 5 stabilizing images (training). A panel of fifteen
observers has participated to the test. Most of them were naive
subjects. The presentation order for each observer is randomized.
To better explain the aim of the experiment and the scoring scale,
we give the following description to the observers: Imagine you
receive an image as an attachment of an email. The resolution of
this latter does not fit with the display and you want to see it in
full screen. A given algorithm performs the interpolation and you
have to score the result as: Excellent: the image content does not
present any noticeable artifact; Good: The global quality of the
image is good even if a given artifact is noticeable; Fair: several
noticeable artifacts are noticeable all over the image; Poor: many
noticeable artifacts and strong artifacts corrupt the visual quality
of the image; Bad: strong artifacts are detected and the image is
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unusable.

Scores processing
The raw subjective scores have been processed in order to

obtain the final Mean Opinion Scores (MOS) presented in the
results section.

The MOS ū jkr is computed for each presentation:

ū jkr =
1
N

N

∑
i=1

ui jkr (14)

where ui jkr is the score of the observer i for the impairment j
of the image k and the rth iteration. N represents the number of
observers. In a similar way, we can calculate the global average
scores, ū j and ūk , respectively for each test condition (algorithm)
and each test image.

Objective evaluation
Objective quality measurement is an alternative of a tedious

and time consuming subjective assessment. In literature there is
a plenty of metrics (Full reference, Reduced reference and no
reference) that models or not the Human Visual System (HVS).
Most of them are not very popular due to their complexity, diffi-
cult calibration or lack of freely available implementation. This
is why metrics like PSNR and SSIM [25] are widely used to com-
pare algorithms.
PSNR is the most commonly used metrics and its calculation is
based on the mean squared error (MSE).

PSNR(x,y) = 20log10
255

MSE(x,y)
(15)

Structural SIMilarity (SSIM) works under the assumption
that human visual perception is highly adapted for extracting
structural information from a scene. So, it directly evaluates the
structural changes between two complex-structured signals.

SSIM(x,y) = l(μx,μy)α c(σx,σy)β s(σx,σy)γ (16)

Evaluation results
Nine super-resolution algorithms coming for the state of the

art have been evaluated objectively and subjectively and com-
pared with our SR algorithm: A for Allebach [12] , C for Chang
[14], E for Elad [26], H for Hardie [27], I for Irani [18], J for
Jensen [11], L for Li [5], Mu for Muresan [15], P for Patti [28].
Ma denotes our approach in the results shown below.
Graphics a,b,c d and e of figure 6 show, for each image from
the test material, the MOS values obtained after the processing
applied to the subjective scores. It shows also the confidence in-
terval associated with each algorithm.
From the subjective scores, one can notice that our approach out-
performs the other existing approaches and that the evaluated al-
gorithms can be grouped in three classes: Low quality algorithms
(E, H, I and J), Medium quality algorithms (A and C) and High
quality algorithms (our approach, Mu, P). Only one algorithm,
L, seems to be content dependent and provide results that can be
put in medium and high quality groups.

For the subjective experiments, we inserted the original im-
ages with the test material without giving this information to the
observers. The scores obtained for these images are high, ap-
proximatively ranging within the 20% highest scores. However,
The difference between images is relatively high. This is due to
the acquisition condition of the image itself. Figure 7 gives the
MOS values and the associated confidence interval for the orig-
inal images. Obviously, Haifa and Lighthouse are around 5 and

-a-

-b-

-c-

-d-

-e-
Figure 6. Mean Opinion Scores (MOS) values and 95% confidence inter-

val obtained for the different algorithms for: a- Lighthouse, b- Caster, c- Iris,

d- Lena and e- Haifa.
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have a very small confidence interval because these images are
relatively sharp and colourful. The worst was Lena because its
background contains some acquisition artifacts that can be con-
sidered by the observers as generated by the super-resolution al-
gorithm.
One important thing that we can exploit from these results is to
use them as an offset to calibrate the MOS of the test images.

Figure 7. Mean Opinion Scores (MOS) values and 95% confidence inter-

val obtained for the original images.

The test material contains two versions of Lenna i.e. color
and grayscale. This has been used to study the effect of the super-
resolution algorithms on colors and on human judgment. Figure
8 shows MOS values and their confidence intervals for color and
grayscale versions. First of all, the scores are relatively close
and it is impossible to draw a conclusion about which is the best.
Then, the confidence intervals are of the same size approxima-
tively. Finally, these results leads to the conclusion that the used
algorithms either allow to conserve the color information or do
not deal with the color information in their conception. Hence,
for the evaluation of super-resolution algorithms (those used here
at least) one can use the Luminance information rather than the
three components.

Figure 8. Mean Opinion Scores (MOS) values and 95% confidence inter-

val obtained for Lena in color and grayscale

The PSNR and the SSIM have been used to evaluate the
quality of the test material used for the subjective evaluation.
Figure 9 and figure 10 show respectively the results for PSNR
and SSIM. It is difficult to draw the same conclusion than
the subjective assessment because the categories are not clearly
present especially for PSNR. This confirms its lack of correlation
with the human perception. However, from figure 9 the low qual-
ity category (PSNR lower than 32dB) is confirmed for algorithms
E, H, I and J.

One can notice that the other algorithms perform better es-
pecially our algorithm (Ma). Results of figure 10 are more cor-
related to human perception than the PSNR because, on the one
hand, we can retrieve the same group of high quality algorithms

Figure 9. PSNR results for the five images and the ten algorithms.

with values very close to one. On the other hand, the medium
quality group can be considered at values between 0.96 and 0.98.
For low quality algorithms, it is really difficult to have a clear
range of scores.

Figure 10. SSIM results for the five images and the ten algorithms.

In order to confirm the declaration about the more or less
correlation of the PSNR and the SSIM with the human percep-
tion, we computed the Pearson correlation coefficient (PCC). Ta-
ble 2 gives the PCC values first for each image and then for the
global data. The PCC values show clearly that SSIM is more
correlated than PSNR but the correlation is not very high.

Pearson correlation coefficient between objective metrics
(PSNR, SSIM) and subjective scores.

Image SSIM PSNR
Caster 0,8224 0,7486
Haifa 0,8758 0,6542
Iris 0,7749 0,6232

Lena 0,7223 0,6465
Lighthouse 0,8963 0,7510

Global 0,7866 0,6745

Figures 11-a and 11-b give scatter plots for the correlation
of the PSNR and the SSIM. It easy to notice that the correlation
of the first is lower than the second and both are low with regards
to human perception. This means that the use of these metrics
to replace the human judgment for super-resolution algorithms
evaluation is to a certain extent incorrect.

These subjective and objectives evaluations showed that our
grouplet-based algorithm outperform the other state-of-the-art
approaches and confirmed our hypothesis that taking into ac-
count the geometry of the color image can enhance the quality
of the SR image.
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-a-

-b-
Figure 11. Scatter plots between the MOS values collected for all images

and the PSNR (a) and the SSIM (b)

Conclusion
In this work, a grouplet-oriented color image interpolation

technique is presented. First, the geometrical flow of the image
is computed by using the grouplet transform. Then, a grouplet-
based structure tensor is defined to combine geometric informa-
tion of the different color channels of the image. A variational
approach is finally defined on the captured geometry. The min-
imization of the proposed functional ensures the synthesize of
the SR image. The proposed algorithm has been evaluated sub-
jectively by psychophysical experiments allowing to quantify the
human judgment and objectively by using two common metrics:
PSNR and SSIM. The performed evaluations showed that our
approach has an improvement over existing SR techniques on a
subjective and objective scale.
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