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Abstract
Colorimetry can predict which lights will look alike. Such

lights are called metameric. Two lights are known to be
metameric if they have the same tri-stimulus values. Using the
tri-stimulus values as the Cartesian coordinates one can repre-
sent light colours as points in a 3D space (referred to as the col-
orimetric space). All the light colours make a tri-dimensional
manifold which can be represented as a circular cone in the
colorimetric space. Furthermore, colorimetry can also predict
which reflecting objects illuminated by the same light will look
alike: those which reflect metameric lights. All the object colours
can be represented as a closed solid inscribed in the light colour
cone provided the illumination is fixed. However, when there
are multiple illuminants the reflected light metamerism does not
guarantee that the reflecting objects will look identical (referred
to as the colour equivalence). In this paper three axioms are
presented that allow the derivation of colour equivalence from
metamerism. The colour of a reflecting object under various il-
luminations is shown to be specified by six numbers (referred to
as its six-stimulus values). Using the six-stimulus values one can
represent the colours of all the reflecting objects illuminated by
various illuminants as a cone in the 6D space over the 5D ball.

Introduction
Colour spaces currently in use (e.g., CIE 1931, sRGB,

CIELAB) are based on the colorimetric space which is suit-
able for representing the colour of light, and less so the colour
of objects. The colorimetric space is the results of identifying
("gluing together") metameric (i.e., visually indistinguishable)
lights. Formally, denote P the set of lights. It should be said
that depending on the issue at hand I will consider various light
sets. Generally, P will be the set of spectral power distribu-
tions, (i.e., integrable functions p(λ ) of wavelength). Let ≈
be metamerism (i.e., the equivalence relation on P satisfying
Grassmann’s laws [1]). Then, the quotient set P/≈ (i.e., the set
of the classes of metameric lights) will be the set of light colours.
It has been proved that there exist three functions s1 (λ ) ,s2 (λ ) ,
and s3 (λ ), which determine for each light p(λ ) three numbers,
ϕ1 (p) ,ϕ2 (p) , and ϕ3 (p):

ϕ i (p) =
λ max

λ min
p(λ )si (λ )dλ , (1)

where [λ min,λ max] is the visible spectrum interval; such that two
lights p1 (λ ) and p2 (λ ) are metameric if and only if ϕ i (p1) =
ϕ i (p2) for each i = 1,2,3 [1]. I consider a particular case when
s1 (λ ) ,s2 (λ ) , and s3 (λ ) are the CIE 1931colour matching func-
tions [2], thus, the ϕ1 (p) ,ϕ2 (p) , and ϕ3 (p) are the XYZ tri-
stimulus values for p(λ ).

It should be noted that Eqs 1 makes sense also for the Dirac
delta-function δ (λ −λ 0) the physical meaning of which is the
monochromatic light of wavelength λ 0. So, sometimes P will
be considered as a broader set including, if necessary, monochro-
matic lights too.

Using the XYZ tri-stimulus values as the Cartesian coordi-
nates one can represent the colour of a light as a point in the 3D

space (referred to as the XYZ colorimetric space). When p(λ )
runs through all the lights the triplets (X (p) ,Y (p) ,Z (p)) make
a colour cone [1][2]. Therefore, the set of light colours can be
represented as a cone in the colorimetric space.

When there is only one light source illuminating a scene,
reflecting objects are visually indistinguishable (i.e., they have
the same colour) if and only if they reflect metameric lights (i.e.,
they bring about the same XYZ tri-stimulus values) [2]. There-
fore, there is a one-to-one correspondence between the set of
object-colours in a single-illuminant scene and the set of the
XYZ tri-stimulus values produced by all the possible reflecting
objects. The latter is represented in the XYZ colorimetric space
as a closed convex volume (referred to as the object-colour solid)
inscribed in the colour cone [3].

In a multiple-illuminant scene, the metamerism of reflected
lights does not guarantee equality of colour appearance of reflect-
ing objects. For example, a yellow surface under a blue light and
a blue surface under a yellow light might reflect lights metameric
to the light reflected by a grey surface under day-light, but never-
theless, all the three surfaces might look very different from each
other [4][5]. Abundant demonstrations of this sort testify that re-
flecting objects producing equal XYZ tri-stimulus values could
have very different colour appearances [6][7]. Thus, it is worth
distinguishing between metamerism and colour equivalence, that
is, total apparent identity of the colour appearance of reflecting
objects. The operational criterion for colour equivalence is sim-
ilar to that for metamerism. Consider a bipartite field, the spec-
tral reflectance properties of the two halves of which are differ-
ent. Assume that each half is independently illuminated by lights
with different spectral power distributions. Then colour equiva-
lence of the two halves will mean the observer is unable to see
the border between the halves. (Note that the bipartite field is
not supposed to be displayed in isolation. On the contrary, it is
assumed to be installed in a real scene alongside other objects).

When illumination is constant, metamerism and colour
equivalence are the same, but for reflecting objects under differ-
ent lights, metamerism does not necessarily imply colour equiv-
alence. In other words, metamerism is a necessary but not suf-
ficient condition for colour equivalence. Thus, being an effi-
cient tools for specifying colour of light, the classical colorime-
try looses its explanatory power when it comes to the colour of
objects in multiple-illuminant scenes.

The main objective of this report is to extend the princi-
ples of colorimetry to make it applicable to multiple-illuminant
scenes. This means, firstly, to formally define colour equiva-
lence alongside metamerism; secondly, to establish some formal
rules allowing us to predict which reflecting objects illuminated
by which lights will be ’colour equivalent’; and thirdly, to de-
velop a geometrical representation of the object-colours suitable
for multiple-illuminant variegated scenes.

Colour equivalence
In what follows only matt Lambertian spatially homoge-

neous reflecting objects will be taken into consideration. The
spectral power distribution of the light reflected by such objects
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can be expressed as the object spectral reflectance function (de-
noted x(λ )) times the spectral power distribution of the incident
light (denoted p(λ )). Let X be a set of spectral reflectance func-
tions, x(λ ), and P a set of spectral power distributions, p(λ ).
For the reasons explained elsewhere [8], P will be restricted to
the set of positive spectral power distributions, (i.e., such func-
tions p(λ ) of wavelength that p(λ )> 0 for each λ ). For brevity
I will refer to X as the object set, P as the light set, and their
elements as objects and lights respectively. Shortened notations
x and p will be used for elements of X and P , respectively. The
Cartesian product X ×P , that is, the set of "object/light" pairs
(x, p) (referred to as colour stimuli), will be referred to as the
colour stimulus set.

Let us denote ≈ metamerism, and ∼ colour equivalence.
More specifically, ≈ is an equivalence relation on P satisfying
Grassmann’s laws [1], and∼ an equivalence relation on X ×P .
That is, given a pair of objects x1, and x2 illuminated by lights p1,
and p2, (x1, p1)∼ (x2, p2) designates that these objects have the
same colour appearance. In other words, they are completely vi-
sually indistinguishable. The quotient space (X ×P)/∼ (i.e.,
the set of the classes of colour equivalent "object/light" pairs)
will be referred to as the object-colour set.

As mentioned above, there is every indication that for
single illuminant scenes colour equivalence coincides with
metamerism; that is, speaking formally, the following axiom
holds true.

Axiom 1 For any particular light p ∈P , and every pair of ob-
jects x1, and x2 in X

(x1, p)∼ (x2, p)⇔ x1 p≈ x2 p, (2)

where x1 p and x2 p stand for the lights reflected from the objects
x1 and x2.

Likewise, it seems safe to assume that two fragments of the
same reflecting object illuminated by two lights will look identi-
cal in colour if they reflect metameric lights.

Axiom 2 For any particular object x ∈ X , and every pair of
lights p1, and p2 in P

(x, p1)∼ (x, p2)⇔ xp1 ≈ xp2, (3)

where xp1 and xp2 stand for the lights reflected from the object
x.

Note that colour equivalence cannot be decomposed into
two equivalence relations: one defined on the object set X , and
another on the light set P . More specifically, assume that there
exists (i) an equivalence relation ∼x on X ; and (ii) an equiv-
alence relation ∼p on P such that for any x1,x2 ∈ X , and
p1, p2 ∈P

(x1, p1)∼ (x2, p2)⇔ (x1 ∼x x2) and p1 ∼p p2 . (4)

In this case if for some light p
 ∈P the colour stimuli (x1, p
)
and (x2, p
) are colour equivalent (i.e., (x1, p
) ∼ (x2, p
)), then
for any other light p ∈P the colour stimuli (x1, p) and (x2, p)
should be colour equivalent too. Thus, the reflected lights x1 p
and x2 p must be metameric for any light p. However, this is
impossible because, as well established, two objects reflecting
metameric lights under one illuminant can reflect non-metameric
lights under the other. This phenomenon is known as metamer

mismatching [2]. It follows that colour equivalence cannot be re-
duced to an object-colour equivalence and a light colour equiva-
lence which are independent of each other. In other words, colour
equivalence is not separable.

An important implication of the colour equivalence insepa-
rability is that it undermines the notion of the intrinsic colour of
the surface, which suggests that colour is a property of surfaces
[9][10]. If Eq. 4 held true the notion of the intrinsic colour would
be justified. However, the colour equivalence inseparability un-
equivocally testifies that colour is a property of object/light pairs,
not reflecting objects themselves.

While colour equivalence ∼ cannot be reduced to
metamerism ≈, Axioms 1 and 2 together with a simple principle
(which will be referred below as the impossibility of asymmet-
ric colour matching) allow the derivation of colour equivalence
∼ from metamerism ≈. In this derivation the notion of a colour
atlas [8] plays an important role.

A subset Ax in the object set X will be called an object
colour atlas if for any light p ∈P , firstly, for every object x in
X there is a single object, ax, in Ax such that (x, p) ∼ (ax, p),
and secondly, all the objects in Ax are not colour equivalent, that
is, for any a1,a2 ∈Ax a1 p a2 p.

Note that the definition of an object colour atlas can be re-
formulated in terms of metamerism because the colour equiva-
lence is used in this definition only with respect to a single il-
luminant. Specifically, Ax is an object colour atlas if for any
object x(λ ) and light p(λ ), firstly, there is a unique ax (λ ) , in
Ax such that the lights x(λ ) p(λ ) and ax (λ ) p(λ ) metameric;
and secondly, if under any illumination different elements of Ax
reflect non-metameric lights.

As pointed out elsewhere [8], an object colour atlas must in-
clude all the so-called optimal spectral reflectance functions, that
is, those that map to the object-colour solid boundary. Indeed, an
optimal spectral reflectance function cannot be metameric to any
other reflectance function for any positive illuminant [8]. There-
fore, for an optimal spectral reflectance function x the relation
(x, p)∼ (ax, p) holds true only if x= ax.

An important example of an object colour atlas is the so-
called optimal object colour atlas [8], that is, a set of spectral
reflectance functions of the form of:

(1−α)x0.5 (λ )+αxopt (λ ) , (5)

where 0≤α ≤ 1; xopt (λ ) is an optimal spectral reflectance func-
tion; and x0.5 (λ ) is the spectral reflectance function taking 0.5 at
every wavelength λ within the visible spectrum interval.

The notion similar to object colour atlas can be formally
defined for lights as well. A subset of spectral power distributions
Ap⊂P will be called a light colour atlas if for any object x ∈
X , and every light p in P , firstly, there is a single element, ap,
in Ap such that (x, p)∼ x,ap , and secondly, if all the elements
in Ap are not colour equivalent for any object in X , that is,
xa1 xa2 for any a1,a2 ∈Ap.

As established in colorimetry, each light is metameric to a
mixture of a neutral light with either a monochromatic light or a
light in the so-called "purple interval", that is, the mixtures of the
two monochromatic lights at the ends of the visible spectrum [2].
Formally, given a neutral light pn (λ ), each light is metameric to
the following mixture

qn pn (λ )+qp(λ ) , (6)

where p(λ ) is either a monochromatic light δ (λ −μ) of some
wavelength μ , or a mixture of the two monochromatic lights:
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δ (λ −λ max) and δ (λ −λ min) ; q0 and q are non-negative num-
bers.

At first glance, a subset of lights (6) is an obvious candidate
to be a light colour atlas. Nevertheless, it does not make a light
colour atlas because two optimal spectral reflectance functions
become metameric under a monochromatic light of the wave-
length λ if these reflectance functions take zero at λ . (This is
one of the reasons why the monochromatic lights are excluded
from P in the present context.)

Still, a monochromatic light δ (λ −μ) can be approximated
by a light with Gaussian spectral power distribution of the form
of

√
2πσ

−1
exp −((λ −μ)/σ)2 , (7)

letting σ approach zero. Therefore, replacing monochromatic
lights in Eq. 6 with Gaussians (7) with sufficiently small σ one
can get a proper approximation to the light colour atlas. Admit-
tedly, such a set of lights will be a light colour atlas for only a
subset of P . This subset does not include lights of very narrow-
band spectral power distributions. Yet, for sufficiently small σ
the difference between this subset of P and the whole P can be
made negligibly small. I will refer to the set of lights of the form
(6) where monochromatic lights are replaced with Gaussians (7)
as the pseudo-monochromatic light colour atlas.

Consider an object colour atlas Ax and a light colour at-
las Ap. For any object x ∈X illuminated by any light p ∈P
there exists an element ax in Ax, and an element ap in Ap such
that the pairs (x, p) and ax,ap are colour equivalent, that is,
(x, p) ∼ ax,ap . Indeed, there exists an ax ∈ Ax such that
(x, p) ∼ (ax, p), and there exists an ap ∈ Ap such that (ax, p) ∼
ax,ap . Thus, we have (x, p)∼ ax,ap .

If there are no colour equivalent pairs in Ax×Ap then for
any object x ∈ X illuminated by any light p ∈ P there is ex-
actly one pair ax,ap ∈ Ax×Ap such that (x, p)∼ ax,ap be-
cause of the transitivity of the colour equivalence. In this case
the Cartesian product of the object and light atlases Ax ×Ap
(referred to as just the colour atlas) uniquely represents all the
classes of colour equivalence. Thus, the colour atlas Ax ×Ap
can be considered as a representative of the object-colour set
(X ×P)/ ∼. I will call elements of the colour atlas Ax×Ap
colour equivalent stimuli. Each colour equivalent stimulus is a
pair ax,ap where ax belongs to the object colour atlas, and ap
to the light colour atlas. I will refer to ax as the material compo-
nent, and ap as the lighting component of the colour equivalent
stimulus ax,ap .

The impossibility of colour equivalence in the colour atlas
Ax×Ap means that asymmetric colour matching is impossible
for the elements of the colour atlas. Indeed, if colour equiv-
alence in the colour atlas Ax ×Ap is impossible, then, given
ax,a
x ∈Ax, and ap,a
p ∈Ap, ax,ap ∼ a
x,a
p implies ax= a
x,
and ap = a
p. Consider colour stimuli ax,ap and ax,a
p . If
ap �= a
p then ax,ap ax,a
p . An asymmetric colour match
means that there exists an a
x such that ax,ap ∼ a
x,a
p . That
is, the colour difference induced by a difference in illumina-
tion can be compensated for by a difference in reflectance. If
ax,ap ∼ a
x,a
p implies ax = a
x, and ap = a
p, then asym-

metric colour matching is impossible in Ax ×Ap. Also there
might be asymmetric colour matching of another kind when
a colour difference induced by a difference in reflectance can
be compensated for by a difference in illumination. Specifi-
cally, given ax,ap a
x,ap , there might exist a
p such that
ax,ap ∼ a
x,a
p . However, the impossibility of colour equiv-

alence in Ax×Ap excludes the existence of such a
p.

That the colour difference induced by a difference in illumi-
nation cannot be compensated for by a difference in reflectance
is a well-known fact established in colour constancy experiments
[11][12]. For instance, Brainard, Brunt & Speigle ([11], p. 2098)
described this as follows. "At this match point, however, the test
and the match surfaces looked different, and the observers felt
as if further adjustments of the match surface should produce a
better correspondence. Yet turning any of the knobs or combina-
tions of knobs only increased the perceptual difference."

Multidimensional scaling of coloured papers lit by lights
of different chromaticity showed that the dissimilarity between
such papers never became zero, even when the papers reflected
metameric lights [4][5]. Furthermore, these multidimensional
studies revealed more than three colour dimensions. Specifically,
it was shown that there existed three material and three lighting
dimensions of object colour [4][5][12]. This is in line with early
results indicating that human observers can distinguish between a
colour difference produced by a material difference as compared
to that produced by a difference in lighting [13]. Thus, manipu-
lating material properties such as reflectance can only minimise
the colour difference in the material colour dimensions, but it
cannot eliminate the colour difference in the lighting colour di-
mensions. Likewise, one cannot eliminate a colour difference
induced by a difference in reflectance by manipulating the illumi-
nation. So, it is safe to assume that the impossibility of asymmet-
ric colour match is an important feature of human colour vision,
that will be formalised as the following axiom.

Axiom 3 Given an object colour atlas Ax and a light colour
atlas Ap, we will say that impossibility of asymmetric colour
match takes place if the following property holds true for any
ax,a
x ∈Ax, and ap,a
p ∈Ap:

ax,ap ∼ a
x,a
p ⇒ ap = a
p and ax = a
x ,

where ∼ is the colour equivalence relation.

Axiom 3 secures that for every object with the spectral re-
flectance function x(λ ) illuminated by a light with the spectral
power distribution function p(λ ) there is a unique element in
the colour atlas Ax×Ap colour equivalent to the colour stimulus
(x, p).

It follows from the definition of colour atlas that there is
one-to-one map between any two colour atlases. If we know
the colour equivalent stimulus for some colour stimulus in one
colour atlas then, in principle, one can derive the colour equiva-
lent stimulus for this colour stimulus in any other colour atlas.

The choice of colour atlas amounts to the choice of non-
linear coordinate system for the object-colour set. A change of
colour atlas, then, amounts to a change of coordinate system in
the object-colour set. The object-colour set along with the family
of colour atlases considered as the family of coordinates systems
will be referred to as the object-colour manifold.

The colour stimuli (x1, p) and (x2, p)may happen to be rep-
resented by colour equivalent stimuli differing only in their ma-
terial components in one colour atlas but not in the other. To
be more exact, given two colour atlases Ax×Ap and A 


x ×A 

p,

colour stimuli (x1, p) and (x2, p) can be represented, on the
one hand, as (x1, p) ∼ (am1,al), and (x2, p) ∼ (am2,al), where
am1,am2 ∈Ax; al ∈Ap; and on the other as (x1, p)∼ a
m1,a



l1 ,

and (x2, p)∼ a
m2,a


l2 , where a
m1,a



m2 ∈A 


x ; a
l1,a


l2 ∈A 


p such
that a
l1 �= a
l2. Therefore, the equality of the material (respec-
tively, lighting) components is not a property invariant with re-
spect to the choice of colour atlas. In other words, it is not a
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property of colour, it is a property of the representation of colour
by the colour atlas.

Interestingly, a human observer’s ability to distinguish be-
tween material and lighting colour differences [4][5][12][13]
leads to the conjecture that the human visual system might en-
code colour using a particular colour atlas. An intriguing issue is
what this colour atlas is.

Evaluation of colour equivalent stimuli: Two-
step colour matching

Consider a colour atlas Ax ×Ap and a colour stimulus
(x, p). There is a unique element (am,al) in Ax×Ap which is
colour equivalent to this particular colour stimulus, that is,

(x, p)∼ (am,al) . (8)

It is worth mentioning that the material am and lighting compo-
nent al in (8) can be evaluated independently. Indeed, (8) can be
decomposed into the following two colour equivalences

(x, p)∼ (am, p) , (9)

and

(am, p)∼ (am,al) . (10)

The material component am is such that it matches object x un-
der the same illumination p. The lighting component al is such
that it matches light p when both fall on the same object (am).
Therefore, evaluation of the colour equivalent stimulus (am,al)
can be performed as a sequence of two colour matchings. As
both the matchings are symmetrical, the evaluation can be done
either experimentally or theoretically.

If the atlases Ax and Ap can be implemented as real re-
flecting objects (e.g., papers) and lights, the colour equivalent
stimulus (am,al) for a given colour stimulus (x, p) can be estab-
lished experimentally in two steps. First, a symmetrical colour
matching experiment is carried out to determine one of the two
components (either am or al); and then the second component
is determined in a second symmetrical colour matching experi-
ment.

When the atlases Ax and Ap are impossible to implement
(as in the case of the optimal object colour atlas), the colour
equivalent stimulus (am,al) for a given colour stimulus (x, p) can
be evaluated theoretically. Indeed, as Eq. 9 means colour equiv-
alence of the two objects (x and am) under the same illumination
(p) it implies metamerism xp≈ am p, that is,

ϕ i (xp) = ϕ i (am p) (i= 1,2,3) , (11)

where ϕ i is defined by Eqs 1. Likewise, Eq. 10 implies
metamerism am p≈ amal , that is,

ϕ i (am p) = ϕ i (amal) (i= 1,2,3) . (12)

Equations 11 and 12 implicitly determine am and al . Moreover,
as both the material and light colour atlases are tri-dimensional
sets, their elements can, in principle, be specified by three para-
meters (coordinates) each. This will reduce the evaluation of a
colour equivalent stimulus (am,al) to resolving a system of six
simultaneous equations with respect to six unknowns.

Consider, for example, the colour atlas Ax×Ap, where Ax
is the optimal object colour atlas (see Eq. 5), and Ap is the
pseudo-monochromatic light colour atlas (see Eqs 6 and 7). In
the case of the CIE 1931 colour matching functions the optimal

spectral reflectance functions prove to be the rectangular spectral
reflectance functions (i.e., taking only 0 or 1 with not more than
two transitions between these values). As shown elsewhere [8],
in this case the elements of the optimal object colour atlas have
the form of:

x0.5 (λ )+α (x(λ ;λ 1,λ 2)− x0.5 (λ )) (13)

where

x(λ ;λ 1,λ 2) =
1, if λ 1 ≤ λ ≤ λ 2;
0, if λ < λ 1, or λ > λ 2.

and |α|≤ 1 (referred to as the rectangle colour atlas).
The three numbers α,λ 1, and λ 2 uniquely determine an el-

ement of the rectangle colour atlas. Moreover, it has been found
that Munsell Hue is well correlated with λ = 0.5(λ 1+λ 2), and
blackness/whiteness with δ = |λ 1−λ 2| [8]. The parameter α
corresponds to the subjective strength of the chromatic quality.
The parameters α,δ , and λ will be referred to as purity, spec-
tral band, and central wavelength, respectively. I will denote
r λ ;α,δ ,λ the element of the rectangle colour atlas with pu-

rity α , spectral bandwidth δ , and central wavelength λ .
Thus, when s1,s2,s3 are the CIE 1931 colour matching

functions equations (11) take the form of (i= 1,2,3)

λ max

λ min
x(λ ) p(λ )si (λ )dλ =

λ max

λ min
r λ ;α,δ ,λ p(λ )si (λ )dλ , (14)

and can be uniquely resolved with respect to α,δ , and λ .
Having derived r λ ;α,δ ,λ from Eqs 14, it can be used

to evaluate al , since evaluation of elements of the pseudo-
momochromatic colour atlas can also be reduced to evaluating
three parameters. Note that Eq. 6 can be interpreted as an alge-
braic linear combination (with the weights qn, and q) of the neu-
tral light pn (λ ) and a monochromatic light of some wavelength
λ 0. The weight qn is always non-negative whereas the weight q
can take negative values. Likewise, using Gaussian approxima-
tion (7), one can interpret Eq. 6 as an algebraic linear combina-
tion of the neutral light and a Gaussian with some wavelength μ .
Although when q < 0, it defines no light, Eq. 6 can be used as
a parametric representation of the pseudo-monochromatic colour
atlas. The parameters qn,q, and μ fully specify the elements
of the pseudo-monochromatic light colour atlas. The denotation
g(λ ;qn,q,μ) will be used for a function determined by Eq. 6
with p(λ ) defined by Eq. 7.

Replacing am and al in Eqs 12 with r λ ;α,δ ,λ derived
from Eqs 14 and g(λ ;qn,q,μ) respectively, one gets the follow-
ing equations (i= 1,2,3):

λ max

λ min
r λ ;α,δ ,λ p(λ )si (λ )dλ =

λ max

λ min
r λ ;α,δ ,λ g(λ ;qn,q,μ)si (λ )dλ (15)

which can be resolved with respect to qn,q, and μ .
The six numbers (α,δ ,λ ,qn,q,μ) specify object-colour in

a similar to that with which the XYZ tri-stimulus values spec-
ify light colour in the classical colorimetry. Furthermore, as is
the case for XYZ tri-stimulus values they can, in principle, be
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evaluated in a colour matching experiment. Indeed, a sextuplet
(α,δ ,λ ,qn,q,μ) specify a particular object illuminated by a par-
ticular light (i.e., a colour stimulus). Adjusting the parameters
(α,δ ,λ ,qn,q,μ) one can get, in principle, colour equivalence
of this colour stimulus with any object lit by an arbitrary light.
Although experiments of this kind have not been done as yet,
there is nothing that could prevent us from conducting them. By
analogy, I will refer to the sextuplet (α,δ ,λ ,qn,q,μ) as the six-
stimulus values, the triplet (α,δ ,λ ) being referred to as the ma-
terial tri-stimulus values, and (qn,q,μ) the lighting tri-stimulus
values.

Object-colour manifold
The rectangle colour atlas, Ax, can be represented as a

ball in the 3D Euclidean space [8]. For each of its elements
r λ ;α,δ ,λ the central wavelength λ and spectral band δ spec-
ify the longitude and latitude of the element’s location in the ball
respectively, and the purity determines its distance from the ball
centre [8]. In turn, the pseudo-monochromatic light colour at-
las, Ap , can be represented as an open 3D circular cone (i.e.,
the 3D circular cone without boundary). Hence, the colour atlas
Ax×Ap can be represented as the Cartesian product of the 3D
ball and the open 3D circular cone. It follows that the object-
colour manifold can also be geometrically represented as the
Cartesian product of the 3D ball and the open 3D circular cone.

Note that if r λ ;α,δ ,λ and g(λ ;qn,q,μ) satisfy equa-
tions (14) and (15) for some x(λ ) and p(λ ), then for any posi-
tive number k0 the pair r λ ;α,δ ,λ and g(λ ;k0qn,k0q,μ) will
satisfy equations (14) and (15) for x(λ ) and k0 p(λ ). In other
words, changing only the intensity of the illumination results in
only a corresponding multiplicative change in qn, and q, the rest
of the six-stimulus values remaining the same.

It follows that one can confines oneself to a "cross-section"
of the cone of lights P . For example, only equiluminant lights
(i.e., lights of equal tri-stimulus value Y) can be taken into con-
sideration. In this case the corresponding subset of the pseudo-
monochromatic light colour atlas will be an open 2D set home-
omorphic to (i.e., it can be continuously transformed into) an
open 2D ball (i.e. an open disc). In other words, the pseudo-
monochromatic light colour atlas for the equiluminant lights can
be represented as an open disc. Therefore, in this case the object-
colour manifold can be represented as the Cartesian product of
the closed 3D ball and the open 2D ball. The "interior" of this
product is homeomorphic to an open 5D ball. Thus, in the case
of equiluminant lights the object-colour manifold can be repre-
sented as an open 5D ball.

Alternative parametric representations of the
object-colour manifold

Although the set of functions {g(λ ;qn,q,μ)} determined
by Eq. 6 with p(λ ) defined by Eq. 7, and q not always positive,
is not strictly speaking a light colour atlas we found it useful
for computational purposes as a parametric representation of the
pseudo-momochromatic colour atlas. Depending on the context,
some other parametric representations of the object colour atlas
(thus, the object-colour manifold) can be used.

Bilinear representation
Given the colour atlas Ax × Ap =

r λ ;α,δ ,λ ,g(λ ;qn,q,μ) , consider three arbitrary
spectral reflectance functions x1 (λ ) ,x2 (λ ) and x3 (λ ), and three
arbitrary spectral power distributions p1 (λ ) , p2 (λ ) and p3 (λ ).

Let us also consider the following equations (i= 1,2,3):

λ max

λ min
r λ ;α,δ ,λ g(λ ;qn,q,μ)si (λ )dλ =

λ max

λ min

3

∑
j=1

k jx j (λ ) g(λ ;qn,q,μ)si (λ )dλ , (16)

and

λ max

λ min

3

∑
j=1

k jx j (λ ) g(λ ;qn,q,μ)si (λ )dλ =

λ max

λ min

3

∑
j=1

k jx j (λ )
3

∑
m=1

km+3 pm (λ ) si (λ )dλ .

(17)

If these six equations can be uniquely resolved with respect
to k1, ...,k6 for any sextuplet (α,δ ,λ ,qn,q,μ) , we will say that
we have a bilinear representation of the atlas Ax×Ap.

A sufficient condition for the existence of a unique solution
for equations (16) and (17) is the non-singularity of the matrix

ω i j where

ω i j =
λ max

λ min
xi (λ ) p(λ )s j (λ )dλ (18)

for any p(λ ).
The advantages of a bilinear representation have been high-

lighted by the authors of the so-called linear models [10][14].
However, an apparent disadvantage of these models is that they
restrict the object and light sets to the three-dimensional sub-
spaces spanned over three predetermined reflectance spectra and
three lights. However, as one can see, such a restriction is un-
necessary since the bilinear representation can be readily used
for representing the whole (infinite-dimensional) colour stimulus
set.

Gaussian representation
Given the colour atlas Ax × Ap =

r λ ;α,δ ,λ ,g(λ ;qn,q,μ) , consider a three-parameter
set of spectral reflectance functions, gm (λ ;km,θ m,μm), which
are defined as follows. Let us designate Λ= λ max−λ min. When
μm ≤ (λ max+λ min)/2 we have: for λ min ≤ λ ≤ μm+Λ/2

gm (λ ;km,θ m,μm) = km exp −θ m (λ −μm)
2 ; (19)

and for μm+Λ/2< λ ≤ λ max

gm (λ ;km,θ m,μm) = km exp −θ m (λ −μm−Λ)2 . (20)

When μm > (λ max+λ min)/2 we have: for λ min ≤ λ ≤ μm−
Λ/2

gm (λ ;km,θ m,μm) = km exp −θ m (λ −μm+Λ)2 (21)

and for μm−Λ/2< λ ≤ λ max

gm (λ ;km,θ m,μm) = km exp −θ m (λ −μm)
2 (22)

For 0 ≤ km ≤ 1, λ min ≤ μ ≤ λ max, and positive θ m equations
(19 - 20) and (21 - 22) define a Gaussian on the visible spectrum
circle with its maximum (equal to km) being at the wavelength μ .
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Consider also a three-parameter set of spectral power dis-
tribution functions of the same form, that is, when μ l ≤
(λ max+λ min)/2

gl (λ ;kl ,θ l ,μ l) = kl exp −θ l (λ −μ l)
2 (23)

if λ min ≤ λ ≤ μ l +Λ/2; and

gl (λ ;kl ,θ l ,μ l) = kl exp −θ l (λ −μ l −Λ)2 , (24)

if μ l+Λ/2< λ ≤ λ max. Likewise, when μ l > (λ max+λ min)/2

gl (λ ;kl ,θ l ,μ l) = kl exp −θ l (λ −μ l +Λ)2 (25)

if λ min ≤ λ ≤ μ l −Λ/2; and if μ l −Λ/2< λ ≤ λ max

gl (λ ;kl ,θ l ,μ l) = kl exp −θ l (λ −μ l)
2 . (26)

Although there is no simple relationship between the para-
meters km,θ m, and μm (respectively, kl ,θ l , and μ l), and the per-
ceptual dimensions of the colours of objects (respectively, light),
the peak wavelength μm (respectively, μ l) can be considered, to
a first approximation, as the stimulus correlate of chromatic hue.

If for any sextuplet (α,δ ,λ ,qn,q,μ) the equations
(i= 1,2,3)

λ max

λ min
r λ ;α,δ ,λ g(λ ;qn,q,μ)si (λ )dλ =

λ max

λ min
gm (λ ;km,θ m,μm)g(λ ;qn,q,μ)si (λ )dλ , (27)

λ max

λ min
gm (λ ;km,θ m,μm)g(λ ;qn,q,μ)si (λ )dλ =

λ max

λ min
gm (λ ;km,θ m,μm)gl (λ ;kl ,θ l ,μ l)si (λ )dλ , (28)

have a unique solution with respect to the triplets (km,θ m,μm)
and (kl ,θ l ,μ l), we will say that we have the Gaussian represen-
tation of the atlas Ax×Ap.

The Gaussian spectral reflectance functions and spectral
power distributions have been used before to model objects and
lights respectively [15][16]. It turns out that they can be readily
used to represent the whole colour stimulus set.

Trade-off between material and lighting com-
ponents

If a pair of a rectangular spectral reflectance function
r λ ;α,δ ,λ and a Gaussian g(λ ;qn,q,μ) make the colour
equivalent stimulus for an object with the spectral reflectance
function x(λ ) illuminated by a light with the spectral power
distribution function p(λ ), the following equations hold true
(i= 1,2,3):

λ max

λ min
r λ ;α,δ ,λ g(λ ;qn,q,μ)si (λ )dλ = ϕ i (xp) ,

(29)

where (ϕ1 (xp) ,ϕ2 (xp) ,ϕ3 (xp)) are the XYZ tri-stimulus val-
ues (Eqs 1) produced by the light reflected from the object
with the spectral reflectance function x(λ ) illuminated by the

light with the spectral power distribution function p(λ ). Cer-
tainly, Eqs 29 do not determine uniquely the colour equiva-
lent stimulus for the colour stimulus (x, p) because the num-
ber of unknown parameters exceeds the number of equations.
It follows that if one assumes that the XYZ tri-stimulus values
(ϕ1 (xp) ,ϕ2 (xp) ,ϕ3 (xp)) are the only source of information
about the colour stimulus (x, p), its colour cannot be uniquely
recovered from these XYZ tri-stimulus values.

In fact, for fixed XYZ tri-stimulus values
(ϕ1 (xp) ,ϕ2 (xp) ,ϕ3 (xp)) Eqs 29 determines a three-
dimensional manifold of colour equivalent stimuli (r,g)
such that rg is metameric to xp. I will refer to it as the
material-lighting invariance manifold.

The Gaussian parametric representation lends itself to look-
ing into the material-lighting invariance manifold. Assume that
μm,μ l ≤ (λ max+λ min)/2 , and λ min ≤ λ ≤ max(μm,μ l) +
(λ max−λ min)/2. In this case, for each i, equations analogous
to (29) will take the form

λ max

λ min
kmkl exp −θ m (λ −μm)

2 exp −θ l (λ −μ l)
2 ×

si (λ )dλ = ϕ i (xp) . (30)

It follows that any pair of k
m and k
l such that 0 ≤ k
m ≤ 1,
0 ≤ k
l , and k
mk
l = kmkl will satisfy Eqs 30. The coefficient kl
determines the brightness of the light with the Gaussian spectral
power distribution (23). The coefficient km is a stimulus cor-
relate of the lightness of the object with the Gaussian spectral
reflectance function (19) – the smaller km, the blacker the ob-
ject’s colour. It has been suggested a long time ago that for a
fixed light reaching the eye, first, there might be many combina-
tions of lightness and brightness that can be perceived; and sec-
ond, these perceptually coupled lightness and brightness recip-
rocally covary with each other (for a review see [17][18]). This
hypothesis has been supported by experiments in which altering
the apparent spatial layout has been shown to result in an appar-
ent change in the object-colour. For example, rearranging depth
cues one can make an object be illusorily perceived at a different
distance where the illumination is different. It turns out that such
an illusory depth shift results in a change in the object’s colour.
A white surface, after having been illusory moved to a brighter
area, looks blackish [18][19].

It proves that such trade-off can take place not only between
lightness and brightness but also between other corresponding
pairs of material and lighting colour dimensions [20]. Indeed,
Eqs 30 can be transformed as

A
λ max

λ min
exp −(θ m+θ l) λ − θ mμm+θ l μ l

θ m+θ l

2
×

si (λ )dλ = ϕ i (xp) , (31)

where

A= kmkl exp − θ mμ2
m+θ l μ2

l +
(θ mμm+θ l μ l)

2

θ m+θ l
.

One can show that for each triplet (km,θ m,μm) there is
not more than one triplet (kl ,θ l ,μ l) such that the sextu-
plet (km,θ m,μm,kl ,θ l ,μ l) meets Eqs 31; and vice versa,
given a triplet (kl ,θ l ,μ l) there is not more than one triplet
(km,θ m,μm) such that the sextuplet (km,θ m,μm,kl ,θ l ,μ l)
meets Eqs 31. Hence, there can be only one pair
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(gm (λ ;km,θ m,μm) ,gl (λ ;kl ,θ l ,μ l)) that is colour equivalent to
(x, p).

To look into the relationship between the material and light-
ing parameters (i.e., (km,θ m,μm) and (kl ,θ l ,μ l)) let us keep the
parameters of the Gaussian under the integral sign in Eqs 31 con-
stant, that is, let us assume that

θ m+θ l = θ , and
θ mμm+θ l μ l

θ m+θ l
= μ, (32)

where μ and θ are some constants. In this case the left-hand-side
terms will be proportional to the corresponding right-hand-side
terms in (31). Therefore, if only the chromaticity is kept constant,
that is, for i= 1,2,3

ϕ i (xp)/(ϕ1 (xp)+ϕ2 (xp)+ϕ3 (xp)) = const,

then the trade-off between material and lighting components is
described by Eqs 32 which can be rewritten as

θ m = θ −θ l (33)

μm =
θ

θ −θ l
μ−θ l μ l. (34)

It follows from Eq. 34 that the parameters θ m and θ l are
bound by a simple linear relation. The parameters μm and μ l
are also linearly related to each other. When θ m and θ l are kept
constant μ l decreases when μm increases, and vice versa.

While it has always been intuitively clear that the same light
coming to the eye can be produced by, on the one hand, say, a
red surface illuminated by a green light, and on the other hand, a
green surface illuminated by a red light, there has been no quan-
titative formulation of this. Eqs 33 and 34 offer a theoretical
framework for evaluation of these mutually interchangeable ob-
ject/light pairs.

If the parameters μm and μ l are considered, at least to the
first approximation, as the stimulus correlates of the material
and lighting hue respectively, then Eq. 34 indicates that there
might be an invariance relationship between material and light-
ing hues similar to the invariance relationship between lightness
and brightness mentioned above. Some colour illusions observed
under pseudoscopic transformation of the apparent relief in real
scenes support this conjecture [20].

From colour to colour image
Natural scenes usually contain a large number of fragments

with different spectral reflectances illuminated by multiple light
sources. The colour of each fragment can be described with two
triplets of tri-stimulus values – the material and lighting ones
(i.e., with the sextuplet of six-stimulus values). It should be
noted that the lighting tri-stimulus values are generally differ-
ent for different fragments even if the scene is illuminated by a
single light source. This is a direct consequence of the insepara-
bility of the colour equivalence. Indeed, if the colour image of
a single-illuminant variegated scene could be described as a spa-
tial distribution of six-stimulus values, the lighting component of
which were constant, it would amount to that an object-colour
can be specified by the three numbers which are determined by
the illuminant only, and the three numbers solely determined by
the spectral reflectance. This would be possible only if colour
equivalence can be separated into two equivalence relations in-
dependently determined on the light and object sets. However,
such a separability is impossible because of metamer mismatch-
ing.

One might argue that our experience testifies that we seem
to never experience more illuminants than in reality. Particu-
larly, a single-illuminant scene is usually perceived as a single-
illuminant scene. It should be noted, however, that the variance
of lighting tri-stimulus values for a single-illuminant scene tells
us nothing of the way the human visual system encodes colour. It
simply means that employing only a single light from the light-
ing colour atlas, one cannot simulate (i.e., produce a match for)
the colour of an arbitrary reflecting object lit by an arbitrary sin-
gle light. Figuratively speaking, a single-light representation of a
single-illuminant scene is, generally, impossible. As with clas-
sical colorimetry, the present theory can predict whether two
object-colour stimuli will look alike, but it does not tell us what
they will look like.

Still, a single-light representation can prove to be a useful
approximation to the true representation of a single-illuminant
scene. Consider, for example, a set of six-stimulus values pro-
duced by a single-illuminant scene. As it is a single-illuminant
scene, one can expect that the variation of the lighting tri-
stimulus values will be not large. In this case one can try to find
a single element of the light colour atlas (i.e., a single lighting
tri-stimulus value) that brings about the material tri-stimulus val-
ues which minimally deviate from the true material tri-stimulus
values. This will be referred to as the minimal single-light repre-
sentation of a single-illuminant scene. Of course, one needs a cri-
terion of "minimal deviation" that, in turn, implies some measure
of proximity in the object colour atlas. As the first approximation
one can use the chromaticity difference based on the spherical
metric [8].

Note that the element of the light colour atlas which brings
the minimum deviation can only incidentally coincide with the
one that is metameric to the actual illuminant. Therefore, knowl-
edge of the XYZ tri-stimulus values of the illuminant does
not yield the minimal single-light representation of a single-
illuminant scene. In other words, the problem of the minimal
single-light representation of a single-illuminant scene cannot be
reduced to that of estimation of the illuminant XYZ tri-stimulus
values.

As there is general belief that illuminant estimation is a key
component of the colour computation performed by the visual
system [21][22], let us look into the issue in more detail. Con-
sider a single-illuminant, variegated scene. In such a scene each
pixel determines three equations as Eqs 29. The resultant colour
distribution in the scene can be considered a result of resolving
this system of simultaneous equations. Although each pixel in
such a scene can, in principle, be assigned a colour with differ-
ent lighting coordinates (qn,q,μ), it is highly unlikely. It seems
plausible to assume that the visual system tries to find a solution
to the system of simultaneous equations (29) with as small num-
ber of light sources as possible. First of all it might attempt at
solving the system of simultaneous equations (29) under the as-
sumption of a single illuminant. In this case equations (29) have
to be solved with respect to the material coordinates α,δ , and λ
for a fixed triplet of the lighting coordinates qn,q, and μ . Assume
also that the visual system performs an illuminant estimate first.
Suppose, for example, that the lighting coordinates qn,q, and μ
of the illuminant are derived from the XYZ tri-stimulus values
of the perfect reflector. Specifically, replacing r λ ;α,δ ,λ in
Eqs 29 with the spectral reflectance function taking 1 at every
wavelength we have (i= 1,2,3)

λ max

λ min
g(λ ;qn,q,μ)si (λ )dλ = ϕ i (p) . (35)
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Thus, if along with the XYZ tri-stimulus val-
ues of the light reflected by the object, that is,
(ϕ1 (xp) ,ϕ2 (xp) ,ϕ3 (xp))) the XYZ tri-stimulus values
of the illuminant (i.e.(ϕ1 (p) ,ϕ2 (p) ,ϕ3 (p))) are known,
then we have a system of six equations with six unknown
parameters that can be resolved uniquely. Moreover, solving
equations (35) with respect to qn,q, and μ , one can determine
the Gaussian g(λ ;qn,q,μ) colour equivalent to the illuminant p,
and then substituting it into Eqs 29 one can resolve these thereby
determining the spectral reflectance function r λ ;α,δ ,λ .

Note, however, that the solutions obtained this way will
differ from the true solutions (i.e., those obtained by using the
spectral power distribution of the illuminant and the spectral re-
flectance of each pixel) not only in the lighting but also in the
material tri-stimulus values. It is to be investigated the differ-
ence between the material six-stimulus values computed by us-
ing the illuminant XYZ tri-stimulus values and the true material
tri-stimulus values.

It must be said that it is not the case that for every set of
XYZ tri-stimulus values one can resolve the system of simul-
taneous equations (29) with respect to the material coordinates
α,δ , and λ for a fixed triplet of the lighting coordinates q
n,q
,μ 
.
A necessary condition for this is that the XYZ tri-stimulus val-
ues (ϕ1 (xp) ,ϕ2 (xp) ,ϕ3 (xp)) for every pixel make a configura-
tion in the XYZ colorimetric space which can be inscribed in the
object-colour solid determined by the Gaussian g(λ ;q
n,q
,μ 
).
Therefore, for single-illuminant scenes well articulated with re-
spect to reflectance, the exact solution of equations (29) with re-
spect to α,δ , and λ for a fixed triplet q
n,q
,μ 
 is rather unlikely
to exist. In this case an approximate solution (i.e., one based on
the minimal single-light representation) can be an alternative.

Conclusion
It has long been recognised that in order to represent the

colour of a reflecting object illuminated by various lights one
needs at least six numbers. All modern models of colour ap-
pearance take as an input the XYZ tri-stimulus values of the in-
cident light as well as the XYZ tri-stimulus values of the light
reflected from the object [23]. Although six numbers is enough
to specify object colour, they cannot be derived from these two
tripletes of the XYZ tri-stimulus values. Moreover, all these
models have only three independent output variables despite the
fact that, technically, the number of colour appearance dimen-
sions predicted by the models can be more than three. An im-
plicit assumption behind all these models is that object colour
can be described as a three-dimensional manifold independent
of the illuminant. However, the object-colour manifold is shown
here to be a six-dimensional manifold. Object-colour requires six
numbers (namely, the six-stimulus values introduced above) for
its specification. Even in a single-illuminant, variegated scene
the object-colours cannot be specified with only three numbers.
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