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Abstract
Modeling of fluorescent color mixing is studied by applying

regression analysis to the measured bispectral data. A sample
set was prepared by using three fluorescent paints and different
mixing combinations. The accuracy of estimations was evalu-
ated by calculating the color difference ΔE in the CIELAB color
space and Euclidean distance of spectra. Even though the es-
timation errors were considerably high, the best results overall
was obtained using a sparse training set and of third order terms
in regression.

Introduction
Mixing of colors is common in dyeing and printing pro-

cesses in textile and paper industry. In industrial processes, color
management plays important role in defining product quality. In
the color mixing process, the relationship between the coloration
process and the resulting color should be modeled. Color mixing
is divided into two different methods, subtractive and additive
color mixing [1]. The additive color mixing is related to mixing
of the colored lights, and subtractive color mixing to the mix-
ing of colored pigments or dyes. For non-fluorescent dyes and
pigments there are methods developed to predict the resulting
subtractive color. For example a basic Kubelka-Munk [2] theory
has been widely used in paper industry despite its known limita-
tions [3–5], such as the negligence of fluorescence.

Fluorescence is a phenomenon where material is excited by
electromagnetic radiation in the specific wavelength region and
the excited state relaxation emits electromagnetic radiation in an-
other, usually longer, wavelength region [6]. When the excita-
tion wavelengths of the material are in ultraviolet (< 380 nm)
region the emission wavelengths are usually in visible region
(380−780 nm). The fluorescence can be measured by many
methods [7] but the most accurate one, in the sense of color, is the
two-monochromator method [8] which was originally developed
by Donaldson in the year 1954 [9]. The result of fluorescence
measurement is a Donaldson matrix which is a complete illumi-
nant independent matrix representation of the bispectral radiance
factor of the sample in the used measurement geometry where
the radiance factor is expressed at each excitation and emission
wavelengths. The reflectance information about the sample is
located in the diagonal of the Donaldson matrix. The standard-
ization of methods for fluorescence measurements and data anal-
ysis as the calculation of the total radiance factor has been devel-
oped [10].

Mixing of fluorescent colorants is a complex process. Be-
cause of the fluorescence, the total radiance factor of the sin-
gle colorant and thus the mixed color is illuminant dependent.
In addition to the absorption of pigments and scattering inside,
there is fluorescence excitation in each pigment. In mixed fluo-
rescent color the emitted light by one single colorant can cause
fluorescence in another colorant. In addition, if the pigments are
close enough (< 10 nm) the transition of energy can occur by
dipole-dipole resonance interaction known as Förster resonance
energy transfer (FRET) [11]. Mixing of fluorescent dyes and

pigments have been studied earlier by applying Kubelka-Munk
theory with fluorescence extension. Ramos and Lagorio devel-
oped method based on Kubelka-Munk theory for studying flu-
orescence of plant leaves [12, 13]. The same correction model
has been used by Verri et al. to study the fluorescence spectra
from the replicas of wall paintings [14]. Shakespeare has also
presented a similar type method for studying coloration in pa-
pers [15]. However, none of these studies present quantitative
colorimetric error analysis.

In present study, the modeling of the fluorescent color mix-
ing is applied, i.e. estimates for the mixed color were derived
by regression analysis from the measured data of a fluorescent
sample set. A sample set was prepared from fluorescent paints
with different concentration ratios. The Donaldson matrix of the
fluorescence was measured using a custom made bispectrometer.
The color difference ΔE in CIELAB colorspace and Euclidean
distance of spectra were calculated for spectral comparison under
simulated D65 and A illuminations. The training sets were cre-
ated using 4 different size training data and 3 different amounts
of terms as variables in regression analysis.

Materials and methods
Samples

The samples were prepared by mixing three fluorescent
poster paints manufactured by Asahipen Corporation. The colors
of the paints were vermillion (Chinese Red), green and lemon.
For better fluidity, the paints were diluted with distilled water us-
ing the water/paint dilution ratio of 3/7. The better fluidity was
needed, because small 1 ml syringes were used for dosing the
paints to test tubes for mixing and then to 50 mm bell class sam-
ple base. Total amount of the paint in each sample was 0.5 ml.
The paint was allowed to dry freely on the bell glass. The fully
dry circular sample area had a diameter ranging from 2.10 cm to
2.30 cm. During the drying process there were cracks emerging
on the surface of the paint layer. The effect of the cracks in flu-
orescence measurement was evaluated to be negligible because
of the large diameter (1.50 cm) of detecting area and the measur-
ing geometry 0/45◦ . The cracks did not cast shadows because
of the illumination geometry used and the portion of the cracks
was small compared to the whole detecting area. Four typical
samples are presented in Fig. 1.

The sample set (n=55) consists of three primary color
samples, 27 two color mixes and 25 three color mixes. The
notation [G,Y,R] of the sample is used to describe the mix-
ing ratios. In this notation G is the relative concentration of
the green paint in percentages, and Y and R are the corre-
sponding values for yellow and red paints. The mixing ra-
tio chart was constructed so that there was nine mixes [a,b],
a = {90,80, . . . ,10}, b = {10,20, . . . ,90} for each two color
combinations and 25 mixes for all three color combinations.
Three color mixes were prepared as combinations [a,b,c], [b,a,c]
and [b,c,a] where a = {90,80,70,60,50,40,20,10}, b = c =
{5,10,15,20,25,30,40,45} and a single [33.3,33.3,33.3] sam-
ple. The color mixtures can be plotted in three dimensional space
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Figure 1. Four typical samples. All the three primary colors green (top

left), lemon (top right), vermillion (bottom left) and a mixture consisting

equal amount of each paint (bottom right).

in Fig. 2 where red dots represent all the primary colors, blue
dots represent each two color mixes and green dots each three
color mixes.
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Figure 2. The constructed mixing ratio space. Red dots indicate all the

primary colors, blue dots show each two color mixes, green every three

color mixes.

Equipment
Fluorescence measurements were conducted by using cus-

tom made bispectrometer- a two-monochromator spectral mea-
suring device. The bispectrometer is assembled on the optical
table and currently the setup consists of 250 W Quartz Halo-
gen lamp, Bentham DTMc300 double monochromator, Glan-
Taylor polarizer, traveling table capable of holding up to four
samples and Hamamatsu PMA-12 spectrograph detector with
200−950 nm spectral wavelength range (Fig. 3). The measur-
ing geometry of the bispectrometer is the standard 0/45◦ geom-
etry [16] and it is adjustable. The device is capable of measuring
three samples and a reference simultaneously by using multiple
linear polarization angles. The measurement of all samples from
300−800 nm with 2 nm sampling interval and two polarization
angles takes approximately two hours. A custom programmed
computer software is controlling the components of the bispec-
trometer and the data acquisition.

The excitation wavelengths used in measurements were

Figure 3. A principle of operation and layout of the bispectrometer.

300−800 nm with 2 nm sampling interval and 5 nm peak half-
width. Because the fluorescence is dependent on the polarization
of incident light, two linear polarization angles 0◦ and 90◦ were
used. Emission spectrum for each excitation wavelength is de-
tected in the wavelength region 200 − 950 nm. Measurements
for one sample were conducted in two parts using two different
exposure times. The exposure time of 80 ms was used in exci-
tation region 300−400 nm, and 25 ms in the wavelength region
400−800 nm. To provide sufficient amount of light to the detec-
tor the 5 nm peak half-width was used. The different exposure
times were necessary to compensate the spectral power distribu-
tion of the current light source (radiance decreases rapidly below
350 nm) which causes noise in the emission spectra.

Donaldson matrix analysis
The data of the fluorescence measurement for one sample

is a fluorescence matrix F (μ,λ ) where each row represents the
emission spectrum at corresponding excitation wavelengths. No-
tations μ and λ refers to excitation and emission wavelengths
respectively. The Donaldson matrix is calculated by dividing
each row of the measured fluorescence matrix by the correspond-
ing spectral intensity of light source Eill (λ ) and peak half-width
Eill,hal f (λ ) as follows [10]

D(μ, i) =
F (μ, i)

Eill (λ )Eill,hal f (λ )
,∀i = λ . (1)

The final result Donaldson matrix is calculated as an av-
erage of both linear polarization angles. An example results of
the bispectrometric fluorescence measurements is shown as a ra-
diance factor graph in Fig 4. The reflected radiance factor (re-
flectance) is shown in the graph with a red curve on the right
and its wavelength scale at the bottom of the image. The contour
in the graph shows the fluorescence radiance factor. The corre-
sponding excitation and emission wavelengths are shown on the
left and at the bottom of the figure respectively. The colorbar
beside the graph represents the bispectral luminescent radiance
factor.

The total radiance factor of the fluorescent sample can be
simulated under any light source if the spectral power distribution
of the light source is known. The D65 standard daylight illumi-
nation spectra defined by Commission Internationale d’Eclairage
(CIE) and CIE1931 standard observer was used in simulations.
In the simulation, the reflectance is unchanged and is obtained
from the diagonal of Donaldson matrix as follows

βR(λ ) = D(μ = λ ,λ ) . (2)
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Figure 4. Radiance factor graph with the mixture of lemon and vermillion

by the ratio [0,90,10] of a sample. The excitation wavelength noise below

350 nm is caused by the low radiance of the used halogen light source.

The simulation has influence on the fluorescence part of the
Donaldson matrix which is weighted by multiplying each emis-
sion spectrum with the corresponding spectral intensity of light
source. The simulated fluorescence spectrum of the sample un-
der chosen illumination is then obtained by summing up each
emission spectrum of the weighted Donaldson matrix. The illu-
minant dependent radiance factor of fluorescence βL(λ ) is cal-
culated by dividing the summed fluorescence spectrum by the
spectral intensity of the light source. The illuminant dependent
total radiance factor of sample is then obtained as a sum

βT (λ ) = βR(λ )+βL(λ ), (3)

from which the XYZ-tristimulus values and further the
CIELAB (L∗,a∗,b∗) color coordinates can be calculated. An ex-
ample result of the simulation under D65 illumination is shown
in the Fig. 5.
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Figure 5. Simulated reflected βR(λ ), luminescent βL(λ ) and a total βT (λ )
radiance factor spectra of sample with the mixture of lemon and vermillion

by the ratio [0,90,10] under D65 illumination.

Regression analysis
Regression analysis is a statistical method for the search-

ing of relationships between variables [18]. The basic idea is to

create a training database by using a specific part of the known
data as a training set. The testing data for the database should
not be used for the creation of the database. In this study, the re-
gression problem is solving the spectrum ri(λ ) for mixing ratio
si = [Gi,Yi,Ri] for any given ratio. A matrix R size of l × n is
defined from the spectra of chosen training sample set as follows

R =

⎡
⎢⎣

r1(λ )
...

rl(λ )

⎤
⎥⎦ , (4)

where each row represents a spectrum of each sample of the
training sample set size of l samples. Index n represents the
dimension of spectra. A matrix S size of l × k from the corre-
sponding mixing ratios is defined as

S =

⎡
⎢⎣

s1
...
sl

⎤
⎥⎦ , (5)

where si is a row vector and index k denotes the number of terms
in the mixing ratio vector. The linear model using only the first
order terms of s is defined as

si = [1,Gi,Yi,Ri] ,k = 4, (6)

where constant 1 is used for biasing [18]. In addition to the linear
components, the 2nd or third order polynomials can be used to
improve the matching of the training set. However, using a higher
degree of polynomials may cause instability in the estimation
model when testing the data outside the training set. When us-
ing the 2nd degree regression with all the cross-product terms the
mixing ratio vector are [1,G,Y,R,G2,Y 2,R2,G∗Y,G∗R,Y ∗R],
k = 10. Third order polynomials are [1,G,Y,R,G2,Y 2,R2,G ∗
Y,G∗R,Y ∗R,G3,Y 3,R3,G∗Y 2,G2∗Y,G∗R2,G2∗R,Y ∗R2,Y 2∗
R,G∗Y ∗R], k = 20. The basic regression estimation model can
be written as

R ≈ SW, (7)

where W is a transformation matrix size of k× n. By using the
least square fitting [18] the solution for matrix W can be calcu-
lated using pseudoinverse. In this study the pseudoinverse was
calculated using matlab function pinv. An estimate spectrum
rtest(λ ) for specific testing mixing combination stest is then ob-
tained as follows

rtest(λ )≈ Wstest . (8)

The regression process was conducted using two calcula-
tion procedures. In the first one, called ”regression from matri-
ces” and abbreviated as ”Mat”, the reflectance and fluorescence
parts of the Donaldson matrices were treated separately. The re-
flectance part of the Donaldson matrices of chosen training set
samples is analyzed by simply using the reflectance spectrum as
a data for each sample. The fluorescence part was analyzed so
that the emission spectrum at each excitation wavelength is used
as a data vector independently for one sample. Thus, the regres-
sion analysis is applied to each excitation wavelength resulting
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in this case the total of 251 (300 to 800 nm with 2 nm interval)
transformation matrices W. The estimation of emission spectrum
for the test sample is calculated individually for each excitation
wavelength using Eq. 8. The estimation for fluorescence part of
the Donaldson matrix is then formed from the estimated emission
spectra. The simulation under different light sources is applied
as described above using estimated reflectance and fluorescence
parts. Total radiance factor of the estimation is obtained from Eq.
3.

In the second calculation procedure, called ”regression from
simulations” and abbreviated as ”Sim”, the measured Donaldson
matrices are first simulated under different light sources. The
simulated total radiance factor spectrum obtained from Eq. 3 is
used as the data vector for each sample. Estimation of the simu-
lated total radiance factor spectrum is calculated using Eq. 8. The
idea behind the ”Sim” method is to simulate the calculation when
the total radiance factor have been obtained using polychromatic
light and spectroradiometer.

Test and training sets
The test set was fixed and it is illustrated as black dots in Fig

6. The test samples were chosen intentionally in the middle area
of the mixing space, where the mixing ratios of each paint are
fairly equal. Four training sample sets were constructed from the
rest of the samples by changing the ”sparseness” of samples in
the mixing ratio space around the test samples starting only with
the primary colors and the middle point sample which composes
equal amount of each paint. Thus, the first training set, repre-
sented as red dots in Fig 6 (a), consists of four samples which
is 7.2% of total samples. In the 2nd training set, the size is in-
creased to 16 samples (29.1% of total) by adding the three sam-
ples from each two color mixes and one sample from each three
color mixes as shown as red and magenta dots in Fig 6 (b). In the
third training set, the every second from each two color mixes
and three samples from each three color mixes is added as shown
as red, magenta and blue dots in Fig 6 (c) and the size is increased
to 28 (51.1% of total). The fourth training set size of 46 samples
(83.6% of total) consists of every sample except the test sample
as shown as red, magenta, blue and cyan dots in Fig 6 (d).

Comparison methods
Two comparison methods, CIELAB color difference and

Euclidean distance between the estimate and measured spectrum,
were used to evaluate the accuracy of estimation. CIELAB color
difference is a widely used measure in color inspection because
of the uniformity of CIELAB color space. It is defined as an Eu-
clidean distance between two color coordinates (L∗

1,a
∗
1,b

∗
1) and

(L∗
2,a

∗
2,b

∗
2) in CIELAB color space, as follows [17]

ΔE =

√
(�L∗)2 +(�a∗)2 +(�b∗)2, (9)

where

ΔL∗ = L∗
1 −L∗

2

Δa∗ = a∗1 −a∗2

Δb∗ = b∗1 −b∗2.

A practical interpretation of ΔE can be described in many
ways, however, the evaluation of quality and acceptability re-
quirements depends highly on application [19]. In this study,
the CIELAB color coordinates were calculated by using the total
radiance factors simulated under D65 and A illuminations. How-
ever, it should be noted that the CIELAB color space is designed
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(a) Training set 1 (b) Training set 2
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(c) Training set 3 (d) Training set 4

Figure 6. The constructed mixing ratio space showing samples of each

training sample set and the test samples. Red dots represent the first train-

ing set (a), magenta dots show the added samples in the 2nd training set

(b), blue ones show the added samples in the third training set (c) and cyan

ones show the added samples in fourth training set (d).

for non-fluorescent colors. In case of fluorescent colors the value
of L∗ coordinate, which represents the lightness of the color can
go beyond 100 which corresponds to the normalized maximum
value for L∗ coordinate CIELAB color space.

The second comparison method was Euclidean distance be-
tween spectra. The Euclidean distance is the most explicit mea-
sure for error estimation between two vectors though it has no
defined meaning in a sense of color matching as the CIELAB
color difference. The Euclidean distance between two spectra
r1 (λ ) and r2 (λ ) is defined as follows

d (r1,r2) =

√
n

∑
i=1

[r1 (λi)−r2 (λi)]
2, (10)

where n represents the dimension of spectra.

Experimental
The regression analysis and the total radiance factor estima-

tions for test samples under D65 and A illuminations were com-
puted using both ”Mat” and ”Sim” methods, four training sets
and one to three regression degrees as variables. The color dif-
ference ΔE and the Euclidean distance between spectra d (r1,r2)
were calculated for the estimated and measured total radiance
factor for each test sample. The mean ΔE and the Euclidean dis-
tance for each calculation combination as a function of training
set size is shown in Figs. 7 and 8 where one can notice that
the linear regression is not giving as good estimations even with
larger training sets than the 3rd degree regression with sparse
training sets. The examples of one of the good (a) and bad (b)
estimations for one sample are shown in total radiance factor
graphs in Fig. 9. An example of standard deviations of ΔE under
D65 illumination is shown in Fig. 10 which illustrates the high
deviation of ΔE values.

CGIV 2010 Final Program and Proceedings 97



0 10 20 30 40 50 60 70 80 90
5

10

15

20

25

30

35

40

45

50

Fraction of training group %

M
ea

n
Δ 

E

1st deg mat

2nd deg mat

3rd deg mat

1st deg sim

2nd deg sim

3rd deg sim

(a) D65

0 10 20 30 40 50 60 70 80 90
5

10

15

20

25

30

35

40

Fraction of training group %

M
ea

n
Δ 

E

1st deg mat

2nd deg mat

3rd deg mat

1st deg sim

2nd deg sim

3rd deg sim

(b) A

Figure 7. The mean ΔE between estimated and measured total radiance

factor as a function of training set size with two testing methods: ”Mat” where

the regression is calculated before simulation by using the Donaldson matrix

and ”Sim” where the regression is calculated by using the radiance factor of

the samples under standard illumination. D65 and A illuminants were used

for simulations. The ”Mat” method gives better estimate with linear degree

regression and the ”Sim” method with the 2nd and 3rd degree regression.

Discussion
The mean Euclidean distance in Fig. 8 have similar type

shapes when comparing to ΔE mean values, differences in be-
havior occur mainly in the 2nd and 3rd degree regressions. The
linear regression behaves the most logically as the estimation er-
rors decrease when the training set size increase for both regres-
sion methods. The ”Mat” method gives the better estimate with
linear degree regression and the ”Sim” method with 2nd and 3rd
degree regression. The effect of overtraining is affecting espe-
cially the performance of 3rd degree regression where the error
measures increases as the training set size increases. The only
exceptions are the 2nd and 3rd training set for the ”Sim” method
which gives fairly good estimations (ΔE = 0.49 being the small-
est) for some samples. In overall the estimation errors are smaller
under A illumination because of weak spectral intensity in the
wavelength region 400− 500 nm where the fluorescence exci-
tation of the samples mainly occurs and thus the possible error
caused by the fluorescence estimation is reduced. The deviation
of ΔE in each calculation procedure is very large ranging from
4 to 12.5 as seen in Fig. 10. The estimation of some samples
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Figure 8. The mean Euclidean distance d (r1,r2) between estimated and

measured total radiance factor as a function of training set size with two

testing methods: ”Mat” where the regression is calculated before simulation

by using the Donaldson matrix and ”Sim” where the regression is calculated

by using the radiance factor of the samples under standard illumination. D65

and A illuminants were used for simulations. The ”Mat” method gives better

estimate with linear degree regression and ”Sim” method with the 2nd and

3rd degree regression.

is remarkably large (> 20) in almost every calculation proce-
dure. That indicates that the irregularity of the measured data
is high. The sample preparation was made completely manually
and errors can arise from the preparation. In addition, the drying
process of the samples affected the surface flatness which causes
differences in the measurements because of the local measure-
ment geometry variations.

In the example of good estimation in Fig. 9 (a), the total
radiance factor estimated using the ”Sim” method follows the
measured one accurately. The effects of bad estimation in spectra
are clearly visible from the bad estimation example in Fig. 9
(b). The peak intensities and positions of both estimate spectrum
differ considerably from the measured spectrum.

By using the regression analysis the mean ΔE values are
high (Fig. 7) and not satisfactory, in the means of color matching,
even at the lowest points. However, a comparison to other meth-
ods such as the fluorescence-extended Kubelka-Munk method
is impossible because the lack of quantitative analysis of color
differences in studies [12–15] where the fluorescence-extended
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(a) Good estimation, ΔE = 2.58 (”Sim”) and ΔE = 16.93 (”Mat”)
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(b) Bad estimation, ΔE = 33.71 (”Sim”) and ΔE = 22.82 (”Mat”)

Figure 9. The estimated and measured total radiance factors of test

sample [25,50,25]. The example of good estimation (ΔE = 2.58 with ”Sim”

method, ΔE = 16.93 with ”Mat” method) under D65 presented in the graph

(a). The estimations are calculated using the 2nd training set and the 3rd

regression degree. The example of bad estimation (ΔE = 33.71 with ”Sim”

method, ΔE = 22.82 with ”Mat” method) presented in the graph (b). The es-

timations are calculated using the first training set and the linear regression.

Kubelka-Munk model was applied. To our knowledge, there is
no earlier study that models the reproduction of fluorescent color
mixtures by colorimetric analysis.

Conclusions
The purpose of this work was to study how the regression

analysis can be applied to model the fluorescent color mixing ac-
curately. It has been shown that as the linear regression behaves
the most logically, thus, the higher degree regressions perform
better when using sparser training sets. The standard deviation
of error between samples is high (from 4 to 12.5 for ΔE). The
reason for big variances end estimation errors can be the irreg-
ularity of samples, caused by inaccuracy in the dosing of paint
process and the limited number of fixed samples which is an is-
sue because of the regression method.

In mathematical and statistical sense, the most accurate
method to analyze the data set by using the regression analysis
is to choose the training samples randomly multiple times using
the specific training set sizes and use the rest of the data as a test
data. However, considering the physical point of view, it is more
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Figure 10. The standard deviation of ΔE between estimated and mea-

sured total radiance factor as a function of training set size with two testing

methods: ”Mat” where the regression is calculated before simulation by us-

ing the Donaldson matrix and ”Sim” where regression is calculated by using

the radiance factor of the samples under D65 standard illumination.

informative to study how the training set consisting of primary
colors or some simple mixes can predict the more complex color
mixing combinations accurately. That is the reason why the fixed
test sample group in this study was used. Based on the present
study, if the regression is used, a sparse training set and 3rd or-
der terms using already simulated total radiance factors would
give the best result for the spectrum prediction of three pigment
mixture.
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