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Abstract 
Image reproduction suffers from several limitations in a 

color management system. In this paper, we have investigated 
artifacts resulting from the inherent characteristics of the color 
transformations by interpolation in three-dimensional look-up 
tables, and the unavoidable measurement noise of the color 
measurement done during device profiling. In our experiments, 
images were manipulated using three interpolation methods, and 
five levels of random noise. Psychophysical experiments were 
conducted to evaluate the quality of the reproduced images. 
Finally the experimental data were collected to analyze the 
color transformations, and test the performance of two color 
image difference metrics in this context. 

Introduction  
There has been increased demand to reproduce images 

using heterogeneous devices and media such as digital cameras, 
displays and printing systems. The employment of different 
color imaging devices results in a common problem that each 
device produces color differently. For example, to use the same 
values based on the device primaries, such as RGB for a display, 
would reproduce different colors by different printing systems. 
Hence, users are lacking color predictability and consistency to 
reproduce color images across different imaging media. This has 
been a driving force for the industry to develop technology to 
achieve successful cross-media color reproduction. Numerous 
attempts for the development of color management systems have 
been made to satisfy different image reproduction tasks from 
one medium to another. The most widely used systems are those 
based on the International Color Consortium (ICC) 
specifications. 

The ICC specification version 4 [1] provides definitions of 
color management architecture, profile format, and data 
structure. A typical ICC-based color management system 
consists of four basic components: profile, profile connection 
space (PCS), rendering intent, and color management module 
(CMM). A profile is a standard formatted file describing the 
device characterization, which defines the relationship between 
a device’s control signals and the actual color that those signals 
produce. The ICC profile often employs multi-dimensional look-
up tables (LUTs) to store the desired values. A process known as 
device characterization (or profiling) serves for this purpose, 
which provides a reliable way for color communications 
between media, and it is sufficient in simple applications with 
well-specified viewing conditions. The CMM is simply a color 
engine or processing engine, which is typically built into 
operating system, application or output device. The CMM 
performs all calculations needed to translate from the color 
space of one device to that of another. Although the ICC 
specifies the format of color profiles and to some extent the 
types of transforms that must be taken place to match colors 
between profiles, much of the process is left up to the 
imagination of the CMM creators. While it is difficult to 
specifically evaluate a vendor’s commercial secrets, CMMs can 
certainly be evaluated based on the results they produce, both 

objectively by analysis of measurements and subjectively for 
pleasing contents. However, because different profiling 
applications will generate slightly different profiles from the 
same set of measurement data, the choice of CMM makes far 
less difference than the choice of profiling device and software 
[2].  

One of the most accurate numerical models for device 
profiling is achieved by the measurement of a large number of 
colors, which can be used to develop multi-dimensional LUTs 
with interpolation for any intermediate colors. The accuracy 
depends on color measurement. Lack of accuracy can lead to 
quantization effects. However, in practice, one must balance the 
time cost and the measurement. Thus, the selection of the 
number of measurement is a very challenging task in the design 
of LUTs. Nowadays, interpolation is widely used to decrease the 
number of measurements. Several interpolation methods, such as 
trilinear, prism, tetrahedral, etc., have been developed. Since 
there is more than one methods of interpolation, each with some 
errors, a situation arises where two CMMs, given identical input, 
can yield different results. 

Over the last few years, considerable progress have been 
made in instrument design and manufacture, which have led to 
more reliable instruments, stable readings and devices that are 
faster, lighter, and easier to use. Systematic errors, due to factors 
inherent in the manufacture of the instruments and the 
measuring situation, remain constant in time with respect to the 
selection and calibration of instruments and well-controlled 
measuring environments. However, the random errors, due to 
unpredictable variations during color measurement, are 
somehow instantaneous and unavoidable in the course of 
measurement, and can only be optimized by using the average of 
a number of repeated and consecutive measurements. The 
precision and uncertainty of the color measurement are mainly 
represented in the LUTs, and affect the color transformation in a 
color management system.  

Consequently, the quality of the reproduced image will 
suffer from both inaccurate color measurement and LUT 
transformation. In this paper, we have investigated the 
influences from both factors and compared three different 
interpolation models, trilinear, tetrahedral and prism, which are 
widely used for LUT interpolation, and analyzed the effects of 
random measurement noise on the transformation using LUTs. 
The qualities of reproduced images were evaluated by 
psychophysical experiments using categorical judgment method. 
An image quality algorithm [3], which was newly proposed for 
predicting color image difference, was also used to evaluate the 
quality of LUTs transformation and compared with sCIELAB 
[4] for this purpose. 

Interpolation, Noise Generation and LUT 
Transformation for Images 

The 3D LUTs employed in ICC profiles are generally built 
for transformation between device-dependent and device-
independent color spaces. In this paper, the 3D LUTs were built 
based on establishing a mapping from 3D RGB color space of 
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the input device and the selected 3D CIELAB color space. This 
is done by sampling the RGB values from 0-255 in different 
intervals and then converting to CIELAB  using a Dell LCD 
display characterization model (see section – psychophysical 
experiment). This display will also be used for the later 
psychophysical experiment. The interval values were set to 32 
(256/8) and 16 (256/16) which were generally used to build a 
medium size of LUTs (9x9x9, and 17x17x17 respectively) used 
in profiling. 

We investigated three interpolation methods in this work. 
Trilinear interpolation is the extension of linear interpolation, 
which can be considered to apply the linear interpolation seven 
times in three dimensions [5, 6]. It approximates the value of the 
mapping point in the CIELAB color space by using the linear 
relationship between an intermediate point within the local RGB 
sub-cube and the data on the lattice point. 

Prism interpolation is similar to trilinear [7]. However, the 
necessary lattice points used to build the linear relationship for 
the intermediate point are reduced by cutting the cube diagonally 
into two halves.  

Kasson et al. [8] investigated several interpolation models 
and found that tetrahedral interpolation is capable of providing 

similar accuracy as trilinear interpolation but with less 
computational effort, which, in turn, faster in implementation 
than trilinear interpolation [9]. This interpolation method can be 
implemented in two steps: divide a sub-space into tetrahedrons 
and then interpolate in each tetrahedron. There are several ways 
to construct a tetrahedron [6].  

Different random noise by increasing the signal-to-noise 
ratios (five levels were considered in this work, 0, 1, 5, 10 and 
20) of Gaussian random noise function, were applied to the L*, 
a*, and b* channels in 3D LUTs for simulating the random noise 
from the color measurement. The value of noise ratio 0 
corresponds to no noise. The value of noise ratio 20 represents 
the largest noise applied to the LUTs’ entries in this study. The 
range of noise ratio was decided by a pilot experiment which 
two observers participated to give a rough evaluation of the 
image quality. The quantities of noise applied for the L* channel 
are plotted in Fig. 1 as an example, in which the LUTs were 
based on the interval value of 32 and only one segmentation (full 
range are 9 partitions according to the LUTs generated by 
interval value of 32) were selected to show how the random 
noise were applied.  

 
 
 

 
Noise ratio 1 

 

 
 

Noise ratio 5 

 
Noise ratio 10 

 

 
Noise ratio 20 

Figure 1 Samples of different noise ratio application on L channels from 1/8 segmentation of LUTs 
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Balloons Sales 

 
Threads Picnic 

Figure 2 experimental samples ( [10],[11]) 

Thus the number of image transformations used in our 
experiments is the combination of two LUT sizes, three 
interpolation methods, and five random noise ratios (including 
noise ratio 0), a total of 30(=2x3x5) reproductions. We selected 
four images, as shown in Fig. 2, including one business graphic 
and 3 pictorial images. The original image states were set to 
sRGB color space in a resolution of 800x600 (96 pixels per inch) 
under D65 standard illuminant. The image reproduction using 
the LUT transformation is presented in Fig. 3. 

A pre-process was applied to generate 3D LUTs of RGB-
LAB by forward monitor characterization model in two sizes of 
9x9x9 and 17x17x17. Then five simulating noise ratios were 
added to the 3D LUTs’ entries. For any input image, the 
conversion from RGB space to CIELAB used the generated 
LUTs with different interpolation methods and then converted 
back to RGB space using inverse display characterization model. 
Totally, 120 testing images were prepared. 

Psychophysical Experiment 
Experiments were conducted in a dark room using a DELL 

21-inch LCD display. The display was calibrated and 
characterized according to ISO3664 [12]. The GOG (Gamma-
Offset-Gain) [13] characterization model was applied which 
gave a predictive error with a median ∆E of 0.43 for the forward 
characterization and a median ∆E of 0.97 for the inverse 
characterization in terms of CIELAB. The results provided a 
reliable translation from RGB to CIELAB, which is also used to 
build accurate LUTs of RGB-LAB transformation as mentioned 
before.   

Four normal color vision observers joined in the 
experiment. Each observer was asked to evaluate the total image 
difference between an original image and a manipulated image 
using categorical judgment. Seven categories were used 
according to [3, 14]. Stages one and seven represent no 
difference and extreme difference separately and stage four 
stands for the average and acceptable difference. 

 

 
Figure 3 workflow of image reproduction by LUT transformation 
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Discussion and Results 

 
Figure 4 The artifacts examples compared between original images (Left) 

and reproduced samples (Right) 

The artifacts resulting from interpolation and random noise 
could be found in several aspects: the stripes and grains in a 
large uniform area, the contours, and the color shift which is 
more visible for the white background with a large noise ratio. 
Examples are shown in Fig. 4. 

The color shift is caused due to the high random noise ratio. 
Fig. 5 shows an example of how white is shifted according to 
different noise ratios. Note that the color shift should not be 
constant due to the random noise. 

 
Figure 5 An example of white shift according to different random noise 

The effects of two intervals (32 and 16), which decided the 
number of LUTs entries, were analyzed. In Fig.6 we have 
plotted the average visual judgments in terms of categories of all 
reproduced images. It can be found from Fig. 6 that the visual 
judgments of intervals value 16 (17x17x17 LUT) are slightly 
higher than that of 32 (9x9x9 LUT). However, the main 
influences are from noise which can be found by the separation 
of 5 noise ratio (0, 1, 5, 10, and 20).  

 
Figure 6 The difference between two LUT intervals (results of interval 16 in 

red and that of interval 32 in blue) 

Three interpolation methods, prism, trilinear, and 
tetrahedral, have been described and discussed in details in [5, 6, 
7, 8, 9 and 15]. In Fig. 7 we have plotted the average visual 
judgments in terms of categories of all reproduced images 
according to different interpolation methods. Results show 
similar performances between different interpolation methods.  

 
Figure 7 The difference between three interpolation models: prism, 

tetrahedral and trilinear 

The random noise ratios were designed to simulate the 
different levels of random noise in color measurement 
procedure. In Fig. 8 we show the average visual judgments over 
all the images, against the noise ratios. It can be seen that the 
tolerance of acceptable difference (category 4) is achieved by 
noise ratio smaller than 5 roughly, which need smaller noise 
ratio interval to refine the result.  

 
Figure 8 The relationship between random noise ratios and visual 

judgments 

CGIV 2010 Final Program and Proceedings 91



 

 

Many efforts have been spent to build image quality 
metrics to replace the time-consuming visual psychophysical 
judgments. In this work, two metrics, sCIELAB [4] and an 
adaptive bilateral filter [3] were investigated based on the 
experimental results using Pearson correlation.  

We compared both metrics here because they have similar 
mechanisms. The algorithm, sCIELAB, was first introduced by 
Zhang et al. based on the analysis of spatial characterization of 
the human visual system and later recommended by the CIE TC 
8-02 [16]. The sCIELAB workflow was carried out using the 
procedure provided by the CIE TC8-02 report. 

The adaptive bilateral filter was based on the bilateral filter 
[17] which is adaptive to the viewing conditions and image 
itself. The difference between sCIELAB and adaptive bilateral 
filter is that the adaptive bilateral filter preserves the edges while 
filtering the image and sCIELAB not. 

Given a color image f(x), the bilateral filter [17] can be 
expressed as: 
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The function  xs ,  measures the photometric similarity 

between the neighborhood centre x and a nearby point  : 
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The domain spread d  is determined by the viewing distance, 
which is based on the conduction of contrast sensitivity 
functions [18].  
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where an image whose width is n pixels corresponds to l meters 
of physical length and is viewed from m meters away. 

For a certain observer, the visual acuity is proportional to 
the viewing distance [19]. When the viewing distance is 
increased, the decrease in sensitivity at higher frequencies has 
been attributed to image blur. When the viewing distance is kept 
constant, smaller images displaying on a certain screen will be 
blurred more and larger images on the same screen will be 
blurred less.  

The range spread is adapted to the image itself by: 

EKr / , 

where E is the image entropy defined by [20] and constant K is 
used to rescale the image entropy into an optimized value and 
entropy E is larger than zero for images. 

Using the adaptive bilateral filter, the experimental image 
pairs were filtered in the CIELAB color space and then the 
average pixelwise differences were calculated using the 
CIELAB color difference formula.   

Fig. 9 shows the performance of two metrics on each 
image. The Pearson’s correlation values were calculated 
between visual judgments and the predicted values by each 
metric. The closer Pearson’s correlation value is to +/- 1, the 
higher the performance. The average Pearson’s correlation value 
is 0.66 for adaptive bilateral filter and 0.64 for sCIELAB. The 
error bars indicate 95% confidence interval which is calculated 

by 06.0296.1%95  NCI , where N represents the number 
of overall observations.  
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Figure 9 Comparison of the performance of sCIELAB and Adaptive bilateral 

filter based on Pearson’s correlation (images from left to right: balloons, 

threads, picnic, sales) 

Conclusion 
In this paper, we have investigated factors inherited from 

3D LUT based color transformation, including the number of 
entries (or size of the LUT), interpolation algorithms, and 
measurement noise which is always present in practical color 
measurement. These three factors have been analyzed based on 
visual psychophysical judgments. The results clearly show that 
random noise will put the main effects on the LUTs 
transformation which, in turn, affects the image quality 
reproduced by the color management system. Two image quality 
metrics, sCIELAB and an adaptive bilateral filter, were 
evaluated using the experimental results. Both metrics achieved 
high Pearson’s correlation between the visual results and the 
metric’s predictions. 
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