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Abstract
In single-sensor digital imaging a color filter array, that is

overlaid onto the image sensor, makes color images possible. In-
cident light rays become band-limited and each sensor element
captures either red, green or blue light. Interpolating the missing
two color components for each pixel location is known as demo-
saicing. This paper proposes to firstly derive an estimated lumi-
nance image by low-pass filtering the original mosaiced sensor
image. In a second step a deconvolution technique re-sharpenes
the blurred luminance approximation, so that it has the same spa-
tial resolution as the original - but bandpassed - sensor image.
Using the high-resolution luminance approximation the partial
RGB colors from the mosaiced sensor image are transformed
into a different color space that is more suitable for color inter-
polation. The new color space consists of least correlated color
data, so that intra-channel interpolation errors have a reduced
impact on inter-channel alignment, and therefore result into less
prominent interpolation artifacts. Demosaicing is performed on
the transformed color data separately for each plane, whereby
again the luminance approximation, which encodes the aligned
gradient direction of all color channels, regularizes the bilinear
interpolation. Finally, the result is remapped into the RGB color
space to obtain the demosaiced color image. Additionally, cor-
related multi-channel anisotropic diffusion is applied onto the
demosaiced color image to further reduce interpolation artifacts
and enable denoising. The proposed algorithm is evaluated and
it is concluded that - although the image formation model could
be verified - its performance heavily depends on the quality of
the luminance approximation, i.e. the deconvolution method.

Problem Outline
Because pixel elements of digital image sensors are only

capable of sensing incident light photons, but cannot distinguish
them by their wavelength, a color filter array (CFA) may be used
to make the photo-detector array sensitive to color. A filter layer
with an alternating mask of red, green and blue filters is placed on
top of the image sensor, thereby band-limiting each sensor ele-
ment according to some regular mosaic pattern. The most widely
chosen pattern is the Bayer filter mosaic [3]. In this pattern half
of the pixels are green, whereas each red and blue pixels cover
25 percent of the sensor. A first row of alternating blue and green
pixels is followed by a second row of alternating green and red
pixels. The Bayer pattern effectively reduces the spatial sam-
pling resolution of the image sensor in favor of additional mul-
tispectral sampling. The aim of an interpolation algorithm is to
recover lost spatial resolution due to the filter mosaic, thereby
preserving high frequency information. Especially, one has to
avoid introducing visual artifacts like blurred edges, aliasing and
false colors, which are mainly the result of interpolating across
edges, falsly anticipated maximum intensity gradient direction
within a color channel [5], and misregistration in color balancing
[17], respectively. Another well known artifact in this domain
is the so-called zippering effect, that is a pattern of alternating
colors, that occurs in otherwise homogeneous regions or at sharp
edges [11].

Previous Work
For a recent survey on color demosaicing algorithms the

reader is referred to [18]. Most successful iterative and non-
iterative algorithms in the spatial domain use the color ratio or
color difference model, that states that in natural images ratios or
differences between color channels are locally the same (see the
following section in this paper). The proper alignment of color
channels is a regularization technique that prevents false colors
to occur in the interpolation result, that otherwise are likely to
be present when interpolation of color planes is performed sepa-
rately ignoring their coupling of intensity gradients. In the afore-
mentioned class of interpolation algorithms due to its higher sam-
pling frequency the green plane is bilinearly interpolated first,
and then red and blue planes are interferred by the color ratio
or color different rules. In further iterations the interpolation re-
sults of the green plane may be enhanced by backward propaga-
tion of the ratio rules between both interpolated and originally
sensed data, so that tight coupling of all channels is enforced.
These algorithms initially rely on high-quality estimates of the
green plane. Examples are found in [9], [5], [17]. In [16] vec-
tor correlated anisotropic diffusion is implemented in the previ-
ous sense for a final enhancement. Other approaches that try to
model correlation between color channels include the following.
The Markov Random Field framework is utilized in [20] to en-
hance a color image that has been previously obtained by simple
bilinear interpolation. There are few vector valued approaches
[10] that interpolate all color channels simultaneously. In [21]
a learning-based vector quantisation algorithm that takes advan-
tage of self-similarity in images is proposed.

The results from [2] and [6] that analyze the fourier spec-
trum of the mosaiced sensor image, also termed Bayer image
due to the special CFA pattern, serve as a basis of the approach
presented in this paper. There it has been found that luminance
and chrominance data are multiplexed within the Bayer image,
because a one-color per pixel image can be written as the sum
of luminance and chrominance, whereby the lower frequencies
located around the center of the fourier spectrum encode lumi-
nance data and the higher frequencies located at the outer bor-
der of the fourier spectrum encode chrominance data. The oc-
currence of color artifacts at object edges during demosaicing
has been explained to be inherent due to the smooth transition
from lower luminance to higher chrominance frequencies in the
fourier spectrum, where both sources of frequencies are mixed
together and no clear distinction can be made [2]. In a further de-
velopment multiplexing has been utilized in [6] for demosaicing
in the fourier domain via the Wiener filtering approach. There
the Bayer sampling is decomposed into a sum of a luminance
estimator and a chrominance projector. This model is inversely
solved to obtain an interpolated color image.

The approach presented here is performed in the spatial do-
main - as opposed to the fourier domain - which makes future
enhancements possible that depend on the spatial relationship of
the underlying data. When working in the fourier domain spatial
information is lost, and additionally computational overhead for
transforming between both domains is introduced.
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Image Formation Model
In this section the origin and justification of the color ratio

and color different rules is given, that lies in a simple color for-
mation model for natural images. The model assumes that color
textures in an image are not too fine grained, so that interpolation
under some local color constancy requirement is valid. A CFA
interpolation algorithm provides an inverse mapping that tries
to reconstruct missing vector elements from the single-channel
Bayer image and estimates its corresponding three-channel color
image. This is an ill-posed problem in both the spatial and spec-
tral domain. Generic prior knowledge applicable to a wide range
of natural images and sensors is necessary for simultaneous regu-
larization in both domains, and is established via intra- and inter-
channel dependencies. The physical color formation model un-
derlying most demosaicing methods is that of a Mondriaan world
made of Lambertian nonflat surface patches [16, 15, pp. 152].
This very simplistic model ignores the existance of speculari-
ties and implies isotropic luminance of objects. Hence, a lumi-
nance image - and as seen later each color plane - is supposed
to be locally homogeneous in the spatial domain (see figure 1 on
the left). Furthermore, the albedo is a property of the material
of an object and also depends on the wavelength (i.e. the color
channel) of reflected light. Thus color channels are linearly de-
pendent and aligned in the spectral domain (see figure 1 on the
right). Again this is due to the albedo, which is just a scaling
factor that describes the amount of light belonging to a special
wavelength (color channel) out of all reflected light (luminance).
Therefore the measurement of a particular color channel is pro-
portional to the normalized shading image due to the overall re-
flected light of an object. If it is further assumed that a given
object is made of a single material, then locally the gradients of
color channels should have the same direction. This oversimpli-
fied model accounts for the constant-hue assumption or specifi-
cally the color ratio rule, that is widely exploited in demosaicing
[18], which states that the ratio of any two color channels is lo-
cally the same. The assumption of high inter-channel correlation
has been proven to hold approximately on a popular real world
image set [8] by [9].

Proposed Algorithm
In the following the proposed demosaicing algorithm is de-

scribed, motivated and linked to the previously introduced image
formation model. A subsection is dedicated to every single pro-
cedure of the demosaicing algorithm, whereby every procedure
is performed sequentially in the order they appear in the text.
With the demosaicing method presented here interpolating the
missing color components is done in a transformed color space
of the Bayer image other than in RGB space directly. The color
transformation is justified by the image formation model from
which a color albedo space is deduced wherein interpolation er-
rors introduced during demosaicing have less influence on the
final interpolation result. For the color transformation, however,
the luminance image needs to be known beforehand, whereas
usually the luminance image is interferred from the full color
image that has been obtained after demosaicing. Therefore, it is
proposed to estimate the luminance image with full spatial sensor
resolution via low-pass filtering the single channel Bayer image
and subsequent deconvolution to achieve super-resolution. The
then known luminance image is utilized for color transformation
and functions as a high resolution weight map within the bilinear
color interpolation step (in color albedo space), for which usually
the sparsely sampled and aliased color planes of the originally
measured Bayer image are used.

Blurred Luminance Image
The first part of the algorithm is concerned with the deriva-

tion of a luminance image from the spectrally sampled Bayer
image that is obtained from the sensor.

The fact that the green channel is sampled twice as dense as
the other two and its quincunx pattern makes interpolation rel-
atively easy when spectral alignment with other color planes is
initially ignored (opposed to the image formation model). Be-
cause the human visual system is most sensitive to green light,
the interpolated green plane is often called the luminance chan-
nel. But this is misleading, since e.g. a red object would have
zero luminance in this sense. Instead, convolution of the Bayer
image with a Gaussian smoothing kernel is proposed.

The spatial CFA sampling of the Bayer pattern introduces
gray-value gradients between neighboring pixels due to their dif-
fering spectral responses. But when a human observer varies his
distance looking at such an image, he won’t recognize those gra-
dients anymore after he is farther away from the image display.
He may see a continuous monochrome image, instead. This ob-
servation suggests that smoothing the Bayer image may create an
approximation of a luminance image, because CFA aliasing due
to high frequency CFA gradients is reduced. Hence, the Bayer
image has been convolved with a 3x3 Gaussian filter. Note, that
the resulting image mixes different spectral channels. Accord-
ing to the formular σ = 0.3(n/2− 1)+ 0.8, where n = 3 is the
size of the horizontal and vertical filter kernel [1], the normalized
Gaussian Gσ with σ = 0.95 (so that the topology of the kernel
integrates to one) is

Gσ =

⎡
⎣0.0625 0.125 0.0625

0.125 0.25 0.125
0.0625 0.125 0.0625

⎤
⎦ . (1)

The authors of [2] have come up with the same filter ker-
nel to approximate luminance for spatial Bayer images. Their
derivation is embedded within a mathematical framework for
CFA imaging based on the finding that in the fourier domain lu-
minance and chrominance information of the Bayer image are
multiplexed by summation. They do not mention that their result
conforms to the normalized Gaussian filter kernel. It is interest-
ing to note, that an unknown Point-Spread-Function (PSF) of a
camera sensor is usually modeled as Gaussian [12]. Therefore
one can take the filter result as a slightly out-of-focus luminance
image of the underlying scene. Due to the Bayer pattern there
are four different 3x3 patches possible, see figure 2. Applying
weighted averaging of color samples according to the filter ker-
nel, and under the assumption that colors are locally the same
as discussed with the image formation model, one gets lumi-
nance L = 0.25R+0.5G+0.25B for all of these patches for any
given center pixel. For example, the convolution of the first patch
shown in figure 2 results in

⎡
⎣G R G

B G B
G R G

⎤
⎦∗Gσ =

0.0625G + 0.125R + 0.0625G +
0.125B + 0.25G + 0.125B +

0.0625G + 0.125R + 0.0625G

and can be finally reduced to L = 0.25R + 0.5G + 0.25B. Al-
though the patterns are spatially different, the same result L is
derived for all the possible mosaic patches shown in figure 2.
Under the assumption that the original colors of the scene are lo-
cally constant, so that the partially measured spectral responses
at each pixel comprising the 3x3 patch all originate from roughly
the same color, the luminance value can be estimated for each
pixel by filtering the Bayer image with the Gaussian filter Gσ .
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Figure 1. A graphical depiction of the image formation model adopted from [15]. On the left the Mondriaan world model and the lambertian reflection model

are shown, whereas the right image emphasises the spectral alignment of different wavelengths of light due to their albedo.

Figure 2. The four local GRBG, BGGR, RGGB, GBRG patches.

Deblurred Luminance Image
After low-pass filtering the Bayer image a continuous but

smooth luminance approximation with lower spatial resolution
than the original sensor image has been obtained. In order to re-
fine the luminance image to have the same spatial resolution as
the sensor image a deconvolution algorithm is employed, because
the additional blurring can be seen as a synthetic PSF applied to
the imaging pipeline. Because the blurring kernel of the PSF is
known, which is the Gaussian kernel Gσ , a straightforward de-
convolution algorithm like Jansson-Van Cittert [13], Richardson-
Lucy [23, 19], or Landweber iteration is applicable. In this case
all of these algorithms seem to perform equally well, so it is de-
cided to stick with Richardson-Lucy which is commonly stated
to be the most robust among them. In the demosaicing algorithm
the amount of Richardson-Lucy iterations has been fixed to 15.

Forward Color Space Transform
At this point in the proposed algorithm there are two images

of the same scene captured by a single digital color sensor avail-
able. These are firstly the originally sensed Bayer image with the
measured spectral pattern, and secondly a synthetically derived
luminance approximation that is of the same spatial resolution as
the sensor image. Note that this luminance image estimates the
intensity of light that is composed of all spectral channels arriv-
ing at every sensor pixel, although only parts of it have actually
been measured according to the bandpassed spatial sampling of
the Bayer pattern. Both are still scalar valued images.

With an estimated full-resolution luminance image known,
a transformed Bayer image is created by dividing the original
Bayer image with the luminance image, that is

b�(x,y) := b(x,y)/l(x,y) (2)

where b(x,y) denotes a pixel in the Bayer image domain, and
l(x,y) is the corresponding pixel in the luminance domain, and
finally the resulting pixel b�(x,y) lies in the transformed color
space of the original Bayer image. Now, in the transformed
Bayer image the amount of the contribution of a sampled color
channel w.r.t. the overall luminance at a given pixel is stored.
This is qualitatively similar to the albedo of the image formation
model discussed in the previous section. Since according to the

model the gradient direction is encoded in the overall luminance,
the color space transform has effectively removed gradient infor-
mation from each sampled color plane. The transformed color
space consists of gradient information of the albedo only, which
can be interpreted as the spatial change in chromacity.

Weighted Bilinear Interpolation
The transformed Bayer image from the previous step is used

for weighted bilinear demosaicing. Because the spectral channel
alignment property, that is encoded in the luminance image, has
been removed from the data, the probability to introduce color
artifacts is reduced.

The interpolation step of the transformed albedo data goes
as follows. Firstly, a three-channel image is allocated, where
each pixel has any one of the form

c�(x,y) := (b�(x,y),�,�)T ,

c�(x,y) := (�,b�(x,y),�)T ,

c�(x,y) := (�,�,b�(x,y))T

(3)

according to the Bayer pattern, whereby a pixel is of the type
c�(x,y) = (R�(x,y),G�(x,y),B�(x,y))T in the new albedo space
where e.g. R� denotes the albedo value of the red color compo-
nent, and a � denotes a missing component value that is to be
interpolated from its local pixel neighbourhood.

For example, the missing green color component G�(x,y)
of the pixel c�(x,y) = (b�(x,y),�,�)T or alternatively c�(x,y) =
(�,�,b�(x,y))T is computed as follows:

G�(x,y) =
∑(m,n)∈N W (x,y,m,n)G�(m,n)

∑(m,n)∈N W (x,y,m,n)
(4)

where the local neighbourhood is defined as N = {(x−1,y),(x+
1,y),(x,y−1),(x,y+1)} and the weighting function W is

W (x,y,m,n) :=
1.0

‖l(x,y)− l(m,n)‖+1.0
(5)

where l(x,y) denotes the luminance value of the deblurred lumi-
nance approximation at pixel location (x,y). The interpolation of
other component values is analogous.

The result of the weighting function W (x,y,m,n) is based
on the luminance difference between the two neighbouring pix-
els (x,y) and (m,n). The approximate luminance image is cho-
sen to obtain values for pixel weighting for two reasons. Firstly,
there are luminance values available for every pixel location. So
this is the most direct way to relate the relevance of a neighbour-
ing pixel value to the current position. Secondly, when using
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luminance differences for weighting, then inherently the inter-
channel coupling of the different color channels is implicitly re-
alized, although each color plane is computationally interpolated
separately. This is due to the image formation model that defines
the correlation among color channels through the overall inten-
sity gradient.

The qualitative form of the weighting function is chosen to
become fastly steeper with increasing luminance differences in
order to provide a sharp cutoff for changing grey value topolo-
gies, i.e. to avoid interpolating across edges. It has been observed
in experiments that a weighting function W (x,y,m,n) that has a
linear weighting scheme accounts for zippering artifacts around
edges. Therefore it is concluded that it is of most importance
in demosaicing methods to model the weighting function ade-
quately [5, 17].

Backward Color Space Transform
After bilinear interpolation in the color albedo space, the

c�(x,y) values have to be remapped into the RGB color space
c(x,y). This is simply done by the inverse operation of the for-
ward color space transform. Specifically, each color channel is
separately multiplied with the approximate luminance image, so
that

c(x,y) := (c�
R(x,y)l(x,y),c�

G(x,y)l(x,y),c�
B(x,y)l(x,y))T (6)

where c�
R, c�

G, and c�
B denote the three albedo components of

c�(x,y). Multiplying each channel with the same luminance
plane ensures that the interpolated color vectors are spectrally
aligned as defined by the image formation model.

Anisotropic Diffusion
Although all the previous steps of the proposed demosaicing

algorithm are derived from the image formation model, there still
remains a source of errors, which is the deconvolution procedure
applied to the blurred luminance image, which itself is only an
approximation made by Gaussian filtering. The most relevant er-
rors introduced by deconvolution are the ringing artifacts around
object edges. Those ringing artifacts consist of amplified gradi-
ents in the deconvolution result that manifest themselves in ei-
ther lighter or darker gray value distributions that surround edges
in repeated parallel stripes. Therefore the gradient directions are
falsely interferred by the previous weighted bilinear interpolation
and false colors occur on edge pixels. In order to re-establish a
common color gradient direction within a local neighbourhood
a vector-correlated anisotropic diffusion technique is applied to
the interpolated color image as a final enhancement step.

For anisotropic diffusion the framework described in [24]
and [25] is used. The main contribution of the framework is sep-
arating the structure tensor field from the diffusion tensor field.
The structure tensor for vector valued images is defined as

S =
N

∑
i=0

[(
∇Ii∇IT

i

)
∗Gσ

]
=

⎛
⎝ ∑N

i=0 I2
ix ∑N

i=0 Iix Iiy

∑N
i=0 Iix Iiy ∑N

i=0 I2
iy

⎞
⎠∗Gσ

where with ∇Ii the gradient image of the iths channel is de-
noted and Gσ is a Gaussian smoothing of the elements of the
gradient product matrix over the field of all such matrices lo-
cated at every image pixel. The number of color channels is
denoted with N here. The structure tensor S robustly describes
local gradient information, which can be extracted from the
orthonormal eigenvectors and their corresponding eigenvalues,

respectively, as λ+/− = 0.5
(

s11 + s22 ±
√

(s11 − s22)2 +4s2
12

)

and θ+ = (cosφ ,sinφ)T with φ = 0.5arctan
(

2s12
s11−s22

)
, where

the small s are the elements of the matrix S, θ+ is the eigen-
vector in the direction of the gradient with strength λ+ and
θ− is the perpendicular eigenvector pointing into the direc-
tion of least change λ−. From the structure tensor the dif-
fusion tensor is derived, so that the diffusion process later
smoothes along but not across edges. Therefore the smoothing
in the direction of least change is weighted most anisotropic,
whereas blurring along the gradient direction is weighted
most isotropic. Such a desired diffusion tensor is given by

D =
[

f+
(√

λ+ +λ−
)

θ−θ T− + f−
(√

λ+ +λ−
)

θ+θ T
+

]
with

the two weighting functions f−(a) =
(
1+a2

)−p1 and f+(a) =(
1+a2

)−p2 with p1 < p2. Then, during the diffusion pro-
cess the update velocity per channel is ∂ Ii/∂ t = trace(DHi),
where Hi denotes the hessian matrix. Finally, with ν =
(∂ Ii/∂ t, . . . ,∂ IN/∂ t)T the new iterated image Ik+1 = Ik +Δt ν is
estimated by an adaptive timestep Δt, which is the percentage of
change in each iteration normalized to the maximum difference
between the current and previous iterations. In this approach all
matrices S, D and Hi are recomputed within each iteration for the
current image Ik, whereby the image I0 is the original input.

Because of the fact that the same diffusion tensor D is used
to smooth each channel, the smoothing remains correlated, which
avoids introducing new color artifacts. Rather, with ongoing time
color artifacts that are present will be removed, because steadily
the low-frequency model common of all channels, from which
the diffusion tensor is derived, is approached and artifacts that
initially resulted from frequency outliers get damped or raised.

The parameters of the diffusion method have been fixed in
the demosaicing algorithm. The anisotropy parameter is p1 =
0.95 and the sharpness is p2 = 0.05 to support strict smoothing
in the gradient direction, the change velocity per iteration is Δt =
0.05 and a total of 10 iterations are performed. This parameter
values support the idea of a slow and steady diffusion process
that does not alter the details of the image structure, but at the
same time enhances the correlation of color plane gradients.

Experimental Simulation
Preparation of Synthetic Test Data

The Kodak PhotoCD database [8] with 24 sample images
of 768× 512 pixel size and showing simple and complex real-
life scenes is used for performance testing. These images are
digitally scanned from photochemical film in a high-quality pro-
cess by a 3CCD sensor. Hence, for every image pixel there are
originally sensed full-color vectors available. To avoid the so-
called Inverse Crime [14], which basically states that to obtain
statistically valid performance data one has to generate test sam-
ples by using a different model than the proposed solution model,
these images are firstly downsampled to half their size according
to the scale-space pyramid [4], whereby a Gaussian smoothing
with five pixels window size for each color channel has been ap-
plied. These color images, that serve as ground-truth data, are
then subsampled with the Bayer pattern.

Luminance Approximation by Gaussian Filtering
In figure 3 the luminance property of a ground truth color

image is exemplarily analyzed to verify the previous claims about
Gaussian filtering of the Bayer image. A synthesized Bayer im-
age is smoothed as described by Gσ and is shown right after
the color image. The following images in figure 3 show the
difference images obtained by measuring the distance between
the smoothed Bayer image and non-linear CIE luminance (Rev.
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Figure 3. The original color image, the Gaussian filtered Bayer image, and difference images between Gaussian and traditional luminance computation.

scaled scaled unscaled unscaled
nonsmooth smooth nonsmooth smooth
CIE Luminance 601 difference images

2144.06 1305.05 5528.5 2607.41 norm
0.022 0.013 0.014 0.007 avg. norm
4.871 3.284 5.852 3.254 avg. mean
4.721 2.416 6.535 2.454 std. dev.

L2-norm brightness difference images
2340.28 1521.23 5985.85 3125.97 norm

0.024 0.015 0.015 0.008 avg. norm
5.050 3.238 6.226 3.306 avg. mean
5.302 3.374 7.035 3.492 std. dev.

Naive brightness difference images
1824.35 905.002 5107.04 1854.7 norm

0.019 0.009 0.013 0.005 avg. norm
4.030 2.233 5.255 2.281 avg. mean
4.144 1.748 6.178 1.801 std. dev.

RMS errors of three widely used luminance measures with the
Gaussian luminance approximation of a Bayer image.

601) [22], RGB-to-monochrome transform by naively calculat-
ing (R+G+B)/3, and the L2-norm of RGB vectors taken for the
luminance part, respectively. Those luminance images for com-
parison are directly derived from the downscaled ground truth
and have additionally been smoothed by the 3x3 Gaussian filter
to simulate out-of-focus blur. In the difference images white en-
codes maximum and black minimum difference in terms of gray
values, which are scaled for display purposes, but typically lie in
a range from 0 to 3. This is further specified in table 1, where
the average differences of all images in the dataset from [8] are
given. Four test series have been studied. A series is termed
unscaled, when the initial downsizing has been omitted, and it
is non-smooth, if the additional smoothing of the ground-truth
luminance in order to simulate out-of-focus blur also has been
omitted. From these results and the difference images it can be
concluded that up to a region-dependent scale factor a Gaussian
smoothed Bayer image approximates luminance. The proposed
filter kernel does integrate the spatially sampled color informa-
tion, that is available around the neighborhood of a Bayer pixel
(see figure 2), so that the result is close to a luminance compu-
tation as if the full-color vector were known, whereby errors are
spatially correlated and are larger at edges of objects due to an
inherent smoothing.

Evaluation of the Demosaicing Approach
The proposed algorithm is able to reconstruct a color im-

age nearly indistinguishable from the original, especially with-
out interpolation artifacts at object edges, but sadly only when
ground truth luminance is used for regularization (instead of the
deblurred luminance approximation). However, this observation
justifies the idea about using an intermediately derived luminance
image that regularizes the demosaicing process. Results degrade
when using the deconvolved luminance approximation, which is
because of ringing artifacts introduced by deconvolution. There-
fore the quality of the deconvolution result is crucial for demo-
saicing. The RMS error between ground truth and interpolated
color images is shown in table 2. The average mean and the
standard deviation have been computed by averaging the values

over all interpolated pixels (of all channels) of all the test im-
ages. Two versions of the proposed algorithm are evaluated. The
first version comprises all the steps described in the previous sec-
tion, whereas the second version has omitted the anisotropic dif-
fusion step. Thirdly, the underlying idea about using a high res-
olution luminance image of the scene for computing the weights
for bilinear interpolation is evaluated by performing the proposed
method using ground truth luminance data derived from the full
color image. Therefore errors in the deblurring procedure do not
have any effect on the interpolation result, and the average RMS
error is below one gray value per channel (see table 2). These
very low average mean RMS error per pixel shows the applica-
bility of the simple image formation model, because the resulting
color values only rely on the color ratio model and the chosen
weighting function. Although the proposed algorithm has addi-
tional denoising capabilities when anisotropic diffusion is incor-
porated, its RMS errors are in the range of those computed with-
out anisotropic diffusion. In order to have a comparison for the
error values, the results for a simple bilinear demosaicing method
are also given in table 2, which are outperformed by the proposed
method. For all methods the errors of the green color plane are
lower than those for the red and blue planes, which corresponds
to their sampling density.

Although the RMS error is a popular method it is not a
color distance metric. Hence, the CIE Lab and its newer derivant
CIEDE 2000 [22] have been evaluated in order to quantify the
perceptual difference between an interpolated and its correspond-
ing ground truth color pixel value. The ΔE value of CIE Lab
measure is the euclidean distance between two color vectors that
have been transformed into a perceptually uniform color space
(other than RGB). For certain intervals of ΔE the following qual-
itative conclusions can be made [26]. For 0.0 . . .0.5 colors are
nearly indistinguishable, 0.5 . . .1.0 makes a difference for the
trained eye, 1.0 . . .2.0 marks a noticable difference, 2.0 . . .4.0
has a perceived difference, 4.0 . . .5.0 is an untolerable difference,
and values of ΔE above 5.0 give rise to two different colors. The
just noticable difference (JND), where most humans begin to see
a difference in two colors, has been defined here as ΔE = 2.3.
The results are given in table 3 analoguous to the test runs de-
fined previously. The CIEDE 2000 and ΔE measures are also in
the same range for both versions of the proposed algorithm and
much lower (better) than the reference results for bilinear de-
mosaicing. To gain further insight the percentage of pixels that
fall into one of the given ΔE intervals is shown for each algo-
rithm (see table 3). For bilinear demosaicing more than half of
the total pixels is above the JND measure and hence contain vis-
ible color artifacts to a human viewer, whereas the opposite is
the case for both proposed algorithms. Also the percentage of
pixels with ΔE > 5.0 is much higher for bilinear demosaicing,
and although this is still true for one fifth of the pixels with the
proposed method the performace gain of the lower than JND in-
terval is overproportional. Again the results for the ground truth
luminance test support the overall image formation model, be-
cause 85 percent of all color pixel values do not make a noticable
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difference to their ground truth counterparts.
Another popular evaluation measure is the peak signal to

noise ratio (PSNR). The authors of [20] note that to their opinion
PSNR does not always quantify edge reconstruction quality as
visually perceived, hence they proposed a peak edge signal to
noise ratio (PESNR):

20 · log10

⎛
⎝255 ·

[
∑s ∑x ∑y e(x,y)

(
Is (x,y)− Ĩs (x,y)

)2

3 ·∑x ∑y e(x,y)

]− 1
2
⎞
⎠ ,

where e(x,y) is 1 if there is an edge pixel and 0 otherwise. Here
their evaluation method is adopted and the function e is replaced
by the result of a sobel filter that is applied to the ground truth
color image for each plane separately. Whereas PSNR weights
the signal strength equally over all pixels, the PESNR gives
higher weights to pixels that are classified as edges. Therefore,
the PESNR measure might be more suitable for evaluating the in-
terpolation quality, because demosaicing algorithms are expected
to behave badly on edge pixels but fairly well within nearly ho-
mogeneous regions. Results are also given in table 2.

Because the RMS error is difficult to interpret and no spatial
relationship of the error can be interferred from the previous per-
formance measures, a visual comparison of the results is made
possible by figure 4. In the lighthouse image with very high spa-
tial frequencies, e.g. around the fence, there are zippering ef-
fects and false colors still clearly visible. One notices that the
images obtained by simple bilinear demosaicing have a blurred
appearance and results of the proposed methods are perceived
sharper. This is due to the fact that false colors and zippering
effects are present at both sides of an edge within the bilinearly
demosaiced result, effectively blurring edges, whereas these arti-
facts have been reduced by the proposed algorithm.

Because the luminance approximation step is crucial for this
method, blurred and deblurred luminance images are shown in
figure 5 for comparison. Each pair of luminance images has been
created corresponding to the procedure described in the previous
section. Ringing artifacts due to the deconvolution technique are
clearly visible as darker and lighter bands around edges, but also
the sharpening effect is apparent. The RMS error of a decon-
volved luminance estimation w.r.t. the ground truth luminance
(Rev. 601) obtained from the original full color images has been
computed over all pixels of all images of the data set, which is
3.892 gray values and its standard deviation is 3.362 per pixel.

Comparison with Sophisticated Approaches
An evaluation has been carried out against the data set avail-

able on the homepage of the [7] paper. There demosaicing re-
sults of the methods by [9] (POCS, projection onto convex sets),
[2] (FDM, Frequency Domain Method), [7] (AF, Asymmetric
Filters), and [7] (AFDM, Adaptive Frequency Domain Method)
are made public. Whereas the algorithm proposed herein out-
performs the simple bilinear demosaicing approach, it performs
worst among the more sophisticated methods. Although this is
true, it shows potential for better results if the luminance approx-
imation through the deconvolution method were of higher qual-
ity, because demosaicing using ground-truth luminance performs
best of all algorithms. Even then the AFDM would be pretty
close in terms of PSNR and PESNR data, but still farther away
in terms of the ΔE measures, refer to tables 2 and 3.

Conclusion and Future Work
In the presented work, a demosaicig algorithm has been de-

scribed that firstly derives an intermediate luminance image from

RMS error (avg. mean and std. dev.) PSNR PESNR
all red green blue

channel(s)
First test series evaluated with downsampling of images
With anisotropic diffusion
1.540 1.964 0.834 1.821 37.971 34.112
2.822 3.472 1.828 3.167
Without anisotropic diffusion
1.539 1.971 0.828 1.820 36.185 32.317
2.832 3.488 1.833 3.174
With ground truth luminance
0.525 0.667 0.134 0.775 44.070 40.732
1.077 1.438 0.324 1.469
Simple bilinear demosaicing
2.666 3.250 1.672 3.075 31.028 26.421
5.269 6.193 3.680 5.933
Second test series evaluated without downsampling of images
With anisotropic diffusion
2.519 2.953 1.488 3.116 33.868 29.560
4.659 5.126 3.216 5.635
Without anisotropic diffusion
3.715 3.994 2.984 4.166 32.032 27.706
5.306 5.679 4.052 6.185
With ground truth luminance
1.090 1.204 0.444 1.621 40.307 36.429
1.827 2.125 0.571 2.784
Simple bilinear demosaicing
4.127 4.861 2.620 4.900 29.168 24.421
8.123 9.191 5.855 9.322
Other sophisticated approaches for comparison
Adaptive Frequency Domain Method [7]
1.402 1.612 0.898 1.696 39.422 35.765
2.395 2.612 1.824 2.749
Frequency Domain Method [2]
1.678 1.996 1.048 1.990 37.301 34.323
3.065 3.453 2.242 3.499
Asymmetric Filters [7]
1.528 1.770 0.985 1.828 38.551 35.244
2.650 2.913 2.012 3.025
Projection Onto Convex Sets [9]
1.590 1.831 1.090 1.851 37.191 35.038
3.172 3.338 2.633 3.545

Errors of demosaicing results w.r.t. the ground truth images.

the original sensor image. Although the Bayer image is spatially
sampled by spectral filters it has been shown and experimentally
evaluated that a luminance image can successfully be generated
that has valid intensity values in the luminance domain for every
pixel location. This approach is unique because by applying a
Gaussian filter with subsequent deconvolution a luminance im-
age is derived through an entirely scalar-based image processing
chain without the previous need for demosaicing the color sen-
sor image. This enables the demosaicing method to perform the
errorneous interpolation stage using a different color space than
RGB, whereby the impact of interpolation errors in the final de-
mosaicing result can be reduced. The luminance image at hand
can thereby be naturally used, according to the image formation
model, to enforce the desired property of inter-channel correla-
tion via weighted bilinear interpolation. Another advantage for
the interpolation procedure is the fact that the luminance image
is of the same spatial resolution as the sensor image, whereas in
previous demosaicing methods weights for interpolation are ex-
tracted from the Bayer image directly, where naturally not any
one of the color planes is of the full resolution. It has been noted,
however, that the luminance estimation needs to be of very high
quality, although the estimation process itself is equally ill-posed
as the color interpolation task. The ideas present in this work
may better translate into a Markov Random Field model, where
the color interpolation and the deconvolution process are coupled
to draw profit in their estimation from each other.
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Method CIEDE CIE Lab
2000 ΔE ΔE ≤ 0.5 0.5 . . .1.0 1.0 . . .2.0 2.0 . . .4.0 4.0 . . .5.0 ΔE > 5.0 ≤ JND

First test series evaluated with downsampling of images
With anisotropic diffusion 1.681 3.695 14.0% 16.7% 19.8% 20.2% 6.1% 23.2% 54.6%
Without anisotropic diffusion 1.687 3.707 13.8% 16.8% 19.8% 20.2% 6.1% 23.3% 54.5%
With ground truth luminance 0.729 1.334 36.7% 26.2% 19.7% 11.0% 2.1% 4.3% 85.4%
Simple bilinear demosaicing 2.530 6.264 11.9% 13.8% 15.8% 16.8% 5.7% 35.9% 44.7%
Second test series evaluated without downsampling of images
With anisotropic diffusion 2.833 5.960 4.8% 8.5% 19.2% 25.6% 7.3% 34.5% 37.7%
Without anisotropic diffusion 2.853 6.009 4.5% 8.6% 19.3% 25.7% 7.3% 34.7% 37.5%
With ground truth luminance 1.092 1.967 23.2% 22.0% 27.2% 17.0% 3.0% 7.6% 77.2%
Simple bilinear demosaicing 3.839 9.516 4.5% 9.2% 11.5% 21.9% 8.1% 44.6% 33.1%
Other sophisticated approaches for comparison
AFDM [7] 1.749 3.324 7.0% 17.5% 20.4% 30.4% 7.9% 16.8% 57.7%
FDM [2] 2.131 3.983 7.7% 16.3% 18.3% 27.1% 8.0% 22.6% 53.2%
AF [7] 1.960 3.597 7.6% 17.1% 19.4% 28.4% 7.9% 19.6% 55.7%
POCS [9] 2.094 3.757 7.6% 16.8% 19.2% 28.6% 7.6% 19.8% 55.3%

Color difference measures using different metrics of demosaicing results w.r.t. the ground truth color image.
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Figure 4. Each row shows demosaicing results of a zoomed part of an image from the test data set. Each column shows the ground truth color image, the

demosaiced image with anisotropic diffusion, the demosaiced image without anisotropic diffusion, and the demosaiced result of bilinear interpolation.

Figure 5. This shows results for the intermediate luminance approximation from scalar-valued color sensor data. The first image of each scene pair shows

the Gaussian filtered Bayer image, and the second shows the deblurred result taken for a high spatial resolution luminance image.
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