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Abstract 
The characterization of trichromatic cameras is usually 

done in terms of a device-independent color space, such as the 
CIE 1931 XYZ space. This is indeed convenient since it allows 
the testing of results against colorimetric measures. We have 
characterized our camera to represent human cone activation by 
mapping the camera sensor’s (RGB) responses to human (LMS) 
through a polynomial transformation, which can be 
“customized” according to the types of scenes we want to 
represent. Here we present a method to test the accuracy of the 
camera measures and a study on how the choice of training 
reflectances for the polynomial may alter the results. 

Introduction 
The last decade has seen an increasing interest in the 

interplay between the distinctive characteristics of biological 
sensory systems and those of the natural environment. In the 
case of vision, this interest reflects the growing evidence that the 
statistical properties (both spatial and chromatic) of the visual 
environment have contributed to shape the way in which our 
visual system (and that of other species) function. Consequently, 
much research is based on the analysis of the visual environment 
(considering the tasks that a living organism needs to perform in 
order to survive and its biological constraints) with the aim of 
learning about the statistical regularities that the visual system 
may have exploited in its development. 

In his review work on the relationships between visual 
perception and the statistical properties of natural scenes, Geisler 
1 points out that measuring within-domain statistics is central to 
testing for “efficient coding” (the hypothesis that the response 
characteristics of visual neurons can be predicted from the 
statistics of natural images plus some biological constraints). 
Only after knowing the probability distribution of the property 
considered, we can determine which is the most efficient way of 
coding it. To this respect it is important to point out that there is 
an exponential relationship between the number of samples 
required to estimate a probability distribution and the number of 
properties considered. In other words, the more complex 
regularities of the visual environment we want to map, the larger 
the number of scenes we need to gather: this is the main reason 
why scientists have so far concentrated on only a small group of 
properties which need few images to compute. Other reason has 
to do with technical limitations: when natural scene regularities 
are unrelated to the chromatic responses of the visual system 
(multiscale analysis, contours, etc.), the use of uncalibrated 
imagery is justified. However when they involve the chromatic 
domain, a more sophisticated approach is needed. 

Two techniques and methods were initially tried to measure 
and compute the statistical regularities of nature in the chromatic 
domain: (a) spectroradiometric devices which measure spectral 
radiance (radiance as a function of wavelength) from a small 
patch of image at the time, obtaining information about 
illuminants and reflective material properties; (b) hyperspectral 
cameras which measure the same from a whole image at the 

time but require long exposures, etc. Both these methods are 
impractical for gathering large databases of in-the-field imagery: 
spectroradiometric devices do not capture the spatial properties 
of natural images and hyperspectral cameras are only useful for 
indoor environments or when there is little change in time (long 
distance shots, man-made structures, landscapes, etc.). A third 
method has been tried more recently to reach a compromise 
between speed, portability and accuracy: calibrated trichromatic 
cameras are fast and portable but do not provide the complete 
spectral information necessary to fully characterize the 
reflectance of every patch of the image, however they are the 
only way to record the statistics of large samples of the visual 
environment to date. 

The latest advances in digital imaging have turned 
trichromatic cameras into the most common device for 
estimating/measuring the properties of natural scenes. 
Commercial digital cameras are relatively cheap and if properly 
calibrated they can provide photometric information for every 
region of the scene (i.e. a measure of the radiant power absorbed 
by each of the camera’s sensors, for each pixel). Calibrating a 
digital camera generally involves converting the image captured 
in the camera (also called device-dependent) color space into a 
reference (or device-independent) color-space. There are 
currently several methods to produce this color space 
transformation (see Martinez-Verdú et al for a more detailed 
explanation2). One of such methods (the spectroradiometric 
approach) consists of obtaining the camera sensor’s response to 
a narrowband monochromatic stimulus which is in turn varied to 
span the whole spectral sensitivity range of the camera2-4. Since 
the stimulus’ radiometric characteristics are known, it is possible 
to reconstruct the sensor’s spectral sensitivity at each 
wavelength (and for each color sensor). It is also necessary to 
measure the sensor’s output dependency on radiant power to 
obtain a complete picture of the camera’s response to light. Once 
the sensor’s responses are known, it is possible to find an 
approximate way of transforming the camera’s RGB values to 
any device-independent color space (commonly the CIE 1931 
XYZ color space). A second approach to the characterization of 
digital cameras is based on mathematical models (mathematical 
approach) which estimate the camera’s matching functions from 
the device RGB responses to a set of (known) spectral 
reflectances, such as the squares of the Macbeth ColorChecker 
card5-8. While the first approach is quite precise, it is seldom used 
because of its complexity. The last method is easier to 
implement but it is very vulnerable to measurement noise. Some 
intermediate approaches rely on assigning an estimated function 
to the camera’s sensors and performing a mapping of the 
camera’s space by means of a “training set” of RGB responses 
and radiometric measurements9-12. Our approach is a mixture of 
the two: it consists of measuring the camera sensitivities by 
means of photographing a white target through a set of spectrally 
narrowband interference filters (spectroradiometric approach) 
while using a training set to “match” the theoretical camera 
output to a device independent space (mathematical approach)13. 
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The problem of converting to cone activation space 
Whatever solution is chosen for characterizing the camera 

output in terms of a device-independent color space, the further 
transformation of these values into a cone activation space is not 
without difficulties. Cone activation spaces are physiologically 
realistic alternatives to the already ubiquitous systems of 
specifying color adopted by the Commission Internationale de 
l’Eclairage (CIE), being the best established of these systems the 
CIE 1931. When the CIE 1931 systems was adopted, the spectral 
sensitivities of the actual photoreceptors in the human retina 
were not indisputably known and instead, a set of hypothetical 
primaries was adopted, based on the experiments of Guild14 and 
Wright15 to determine the human color matching functions. The 
trichromatic values XYZ of the CIE 1931 system can be 
understood as the photon catches of three arbitrary 
photoreceptors with spectral sensitivities determined by the so 
called , ,x y z  functions. These functions are approximately 
point-by-point linear transformations of the cone spectral 
sensitivities of an average human observer (in fact z  is actually 
very close to the spectral sensitivity of human short-wavelength 
-or “S” cones and y  was chosen to have the same shape as the 
standard function of luminous sensitivity or V ).  

Despite the CIE 1931’s popularity and some obvious 
advantages, a chromaticity system that is not based on human 
physiology (or any other physiology, as in this case) is of limited 
use for researching the neural properties of a visual system. To 
amend this situation, a number of physiologically-plausible 
chromatic systems have been adopted by the neuroscience 
community, being one of the most popular the MacLeod-
Boynton16 space. In the MacLeod-Boynton space, the axes 
correspond to two of the chromatic channels identified 
physiologically by Derrington et al 17 in the early visual system. 
In this space, physiologically significant loci are represented by 
horizontal and vertical lines. To make the situation more 
complicated, MacLeod-Boynton system is derived from the 
Smith and Pokorny18 human cone sensitivities, which in turn are 
not exact point-by-point transformations of the CIE , ,x y z , 
but of the slightly different set of primaries calculated by Judd in 
1951 (and tabulated by Vos in 1978) known as the Judd-Vos 
response functions19. These are favored in visual science because 
of its better estimate of luminosity at short wavelengths. There is 
a formula19 for transforming between the chromaticity 
coordinates of the CIE 1931 and the Judd 1951 system but it is 
valid only for monochromatic lights. This means that to use the 
MacLeod-Boynton system or any other cone activation space 
derived from the Smith and Pokorny (1975) sensitivities it is 
necessary to know the spectroradiometric properties of the 
stimulus. 

The most straightforward way of avoiding the 
inconvenience of a two-part chromatic conversion of the 
stimulus (from device-dependent camera-RGB space to CIE 
1931 XYZ and then to Smith and Pokorny LMS (L for long, M 
for middle and S for short wavelength) cone activation space 
with the consequent transformation errors, is to characterize the 
camera directly in terms of the later (LMS) space. This can be 
done if one already knows the camera’s sensor spectral 
sensitivities by means of finding the best transformation between 
the two chromatic systems. In this work we have based our 
analysis in the Smith and Pokorny (1975) cone responses, which 
are calculated at the cornea (as opposite to cone “pigment” 
spectral sensitivities). However, an alternative LMS dataset 
based on the Stockman and Sharpe (2000) cone fundamentals20 
(which are currently adopted by the CIE) is also available for 

download from our website13. The results for both datasets are 
similar. 

A transformation from camera-RGB space to cone-
activation LMS space. 

Accurate linear transformations between chromatic spaces 
can be implemented only if the spaces satisfy the Luther 
condition21,22 that is, primaries should be linear combinations of 
each other. This means that for an exact transformation of any 
triplet representing the quantum catches of the three camera 
sensors to the equivalent catches of the human LMS cone 
sensors to exist, there must exist a linear transformation between 
each point of the camera’s spectral sensitivities and the 
corresponding point of the human cone spectral sensitivities. 
This condition is extremely hard to satisfy which means that 
surface metamerism will indeed exist (unless the camera has 
been specifically designed for that purpose, which is hardly in 
the interest camera manufacturers, to say the least) however, 
several approximations can be attempted. One such 
approximation consists of a mathematical approach style and 
relies on the existence of a calibrated camera where the sensor 
sensitivities are known, and can be implemented as follows. 

Suppose that we know the sensitivities of the camera 
sensors S

i
, and a given sample of the types of reflectances R and 

illuminations I that we are likely to photograph (which are all 
function of the wavelength), then we can calculate the camera’s 
output G for each sensor i, surface j and illumination k by using 
equation 1:  
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(1) 

On the other hand we can do the same calculations for the 
cone activation D values that the same combinations of 
reflectances and illuminants are likely to elicit when sampled by 
each of the human cone sensitivities C

i
. 

, , ( ) ( ) ( ) ;    

where

1,2,3 :  L, M and S cones
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1, 2,..., :  illuminants most likely to encounter
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i
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(2) 

Our problem is now reduced to finding the best 
mathematical solution (mapping) to match each set: cone 
activations to camera sensors activations. To map D and G there 
is variety of  techniques, from interpolation and lookup tables 23,24 
to polynomial regressions 25-27, neural networks 9 and spectral 
reconstructions 28,29) which may prove more or less efficient and 
have various pros and cons (for a comparison of some of these 
techniques see Cheung et al9 and Hong et al27).  

Polynomial solutions 
For our transformation, we choose a very simple (least-

squares) regression mapping method consisting of finding the 
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optimal polynomial transform for an arbitrary set of reference 
surface reflectances. The choice of references may depend on 
the particular problem, e.g. one choice may optimize the 
colorimetric mapping for natural surface reflectances and give a 
higher colorimetric error for saturated blues or it may not 
transform the white appropriately. However, we can turn this 
multiplicity of choices to our advantage, since it gives us the 
freedom of deciding which colors are likely to be predominant in 
the images (or need to be specified precisely) and which ones 
are likely to withstand a larger colorimetric error. We have used 
a similar idea to calibrate our camera in the CIE 1931 XYZ color 
space13 

For our regression mapping, both the outputs of the camera 
sensors G and those of the human sensors (cones) D for our 
reference dataset of N surface reflectances and M illuminations 
are treated as a set of NxM triplets and indexed with a single 
letter (j). The values of G, are then mapped to the values of D 
using a polynomial expansion as follows: let Gi,j correspond to 
the jth vector of RGB (R corresponds to i=1, G to i=2 and B to 
i=3) values obtained by our camera from the combination of 
surface/illumination j (part of a set of NxM measurements) and 
let Di,j correspond to the LMS cone capture values (L 
corresponds to i=1, M to i=2 and S to i=3, to follow a similar 
notation) of the same combination. In the simplest case, our 
objective would be to find the matrix T that minimizes  in the 
following expression: 

3 2

, ,
1 1

NxM

i j i j
i j

D G T
 

   
(3) 

However, in our case, the product GT was replaced by a 
polynomial expansion. Leaving the expression to minimize as: 

3 2

,
1 1

NxM

i j j
i j

D Q P
 

   
(4) 

where Q represents the vector Qj = [G1,j , G2,j , G3,j , G1,jG2,j , 
G2,jG3,j , G1,jG3,j] for each of the three sensors i and NxM 
measurements j. P is a matrix of 6x3 coefficients to be 
determined.  

Both sets of NxM triplets can be obtained using equations 1 
and 2, applied to our “reference” set of reflectances and 
illuminations, the question now resides on how to choose the 
characteristics of these reference datasets. 

Given that we do not know in advance which will be the 
main use of our characterization to LMS, we tried at first a 
generalist approach, considering a wide sample of known 
reflectances: a set of 1269 mate Munsell chips in the 400-700 
nm range obtained from the COLORLAB30 database and 
illuminated by a standard D65 illuminant. 

This choice of training set should give a reasonable 
mapping over a wide color gamut. However, if we knew in 
advance that the scenes to be photographed were, say, landscape 
scenes, it might be possible to get a precise mapping by creating 
a P matrix optimized for reflectances such as those of 
chlorophyll, bark, sky, etc. 

Methods 

Camera calibration 
The spectral sensitivities of the sensors of a trichromatic 

camera (Sigma Foveon SD10) were measured by recording its 
RGB sensor’s responses to light transmitted by a set of 31 
spectrally narrowband interference filters. These recordings 
were later compared to equivalent spectroradiometric measures. 
The camera’s sensors dependency with light intensity and 
integration time was also measured by means of a Macbeth 
ColorChecker card. The light was produced by an IR-filtered, 
tungsten-halogen lamp (Osram HLX 64657FGX-24V, 250W) 
connected to a constant-current power-supply to ensure 
illumination stability during the whole process. To minimize 
measurement noise, the calibration was conducted inside a black 
room (walls were painted black). All measures were made with a 
telespectroradiometer (TopCon model SR1, calibrated by the 
UK’s National Physical Laboratory). This instrument was 
capable of measuring spectral radiance within the 380-760 nm 
range. Its spectral radiance measurements were within the 4% 
limits specified by the manufacturer at the time of its calibration. 
A complete description of the camera calibration and accuracy 
tests is currently online 13.  

By means of the set-up described in Figure 1 we were able 
to measure the sensor’s dependency with wavelength (including 
the camera lens at a particular configuration). The dependency 
with intensity was measured by photographing a Macbeth 
ColorChecker under fixed illumination several times, varying 
the camera’s shutter speed (the sensor’s integration time). The 
non-linearities of the sensors with regard to intensity were 
compensated by means of a gamma-correction function similar 
to that defined for CRT monitors. The sensor’s dependency with 
wavelength is shown in Figure 2 (values have been scaled so 
that the middle-wavelength sensor’s maximum value is equal to 
1). In a normal setup, physical information about the camera lens 
(their aperture and focal length) and shutter speed is extracted 
from the picture header and incorporated automatically to the 
lens+sensor capture calculations. These curves are similar to 
those obtained for the same sensors (in isolated conditions) by 
Lyon and Hubel31. 

 
Figure 1: Scheme of the camera calibration set-up. The “target” consisted 

of a white patch inside a box which could be illuminated form one side and 

photographed though the other. Light reflected form the patch was either 

measured or photographed through spectrally narrowband filters. The 

tungsten-based illumination was supplied by a constant-current power 

source. The complete camera sensors calibration is described online 

alongside a calibrated picture dataset. 

(http://www.cvc.uab.es/color_calibration/). 
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Figure 2: Camera sensors sensitivity normalized to maximum = 1 for the 

Green sensor (i = 2). 

Polynomial solutions to equation 4 were found by solving 
for P equation 5, where D is the matrix of LMS cone responses 
calculated from equation 2 and Q is the expanded matrix of 
RGB camera responses calculated from the discrete version of 
equation 1 for all test reflectances.  

 

 D Q P , (5) 

11 21 31 11 21 21 31 11 31

12 22 32 12 22 22 32 12 32

1 2 3 1 2 2 3 1 3

1, 2, 3, 1, 2, 2 3, 1, 3,

where

... ... ... ... ... ...

being  , the total number of reflectances

and illuminan

j j j j j j j j j

J J J J J J J J J

G G G G G G G G G

G G G G G G G G G

G G G G G G G G G

G G G G G G G G G

J M N



 

Q

t combinations 

 
 
The solution for P (calculated for 1269 Munsell chip 

reflectances) is a 6x3 matrix of coefficients, shown in  
Table 1.  

 

-0.03642 0.158517 -0.0680 -1.63e-08 -1.52e-08 3.71e-08

-0.08864 0.192649 0.07204 -1.02e-08 -8.73e-09 2.23e-08

0.043564 0.13908 0.14357 -9.69e-09 -9.27e-09 2.17e-08
 

Table 1: Exemplary set of coefficients obtained by solving equation 5 for P 

in Matlab. The coefficients applied to double products (columns 4, 5 and 6) 

are usually much smaller than those applied to single sensor outputs 

(columns 1,2 and 3), indicating that a simple 3x3 transformation may be 

adequate for many applications. 

The following section shows the “RGB to LMS” 
characterization errors obtained for several training sets of 
reflectances, tested on a dataset of eight calibrated hyperspectral 
images, available online from Manchester University 32 in the 
UK. 

 

 
Figure 3: Schematics of the experiment to test the accuracy of the LMS 

cone characterization of our trichromatic (RGB) camera. The workings of 

the camera were simulated by sampling a hyperspectral set of scenes 

(synthetically illuminated by a D65 illuminant) through the camera sensors’ 

sensitivities. The results were then transformed to LMS by the polynomial 

described in equation 5 (“test image”) and compared to the actual 

samplings of the same hyperspectral imagery by the human cone 

responses (“ground truth”). The pictures inside the figure show gamma-

corrected versions of the actual results for an exemplary image (scene 7, 

taken from the hyperspectral database gathered by Foster et al32). 

Experiments and results 
The quality of our camera characterization in terms of 

LMS-cone capture was measured for several different 
polynomial values, each one obtained for a different training set 
of reflectances. The training sets used here were in the 400-700 
nm interval, illuminated by a simulated D65 (CIE standard 
daylight illuminant) and can be described as follows. 

TS1: Munsell training set. It consists of the reflectances of 
1269 mate Munsell chips sampled every 10 nanometers and 
interpolated to 1nm. They were obtained from the COLORLAB 
database30. 

TS2: Macbeth ColorChecker training set. It consists of a set 
of 24 reflectances obtained from the Macbeth ColorChecker 
sampled every 1nm intervals. 

TS3: NE reflectances training set. It consists of a set of 219 
Northern European natural reflectances33 sampled in 1nm 
intervals. 

TS4: Chlorophyll training set: it consists of reflectance 
samples obtained from scene 2 of the dataset (see Figure 4 for a 
thumbnail set showing all the scenes used in this analysis). The 
samples were obtained by probing the hyperspectral scenes, 
extracting the spectral reflectance of every other pixel in both 
dimensions (341,030 samples in total). 10 nm sampling was 
interpolated to 1 nm. 
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TS5: Urban reflectances training set. It consists of samples 
obtained from both, scene 6 and scene 7 (see Figure 4), 
extracting the spectral reflectance of surfaces every three pixels 
in both dimensions (302,911 samples). 

The different polynomial values were tested on the dataset 
by calculating the corresponding LMS values using both, the 
camera-sensors-polynomial transformation and a simulation of 
the LMS cones (see Figure 3). The first transformation was the 
“test” and the second was used as “ground truth” for this 
comparative analysis. The resulting pairs of LMS images were 
scaled to a maximum value of 1 and the “test” was subtracted 
from the “ground truth”. The difference between the images 
gives us an idea of the error err arising from the calibration 
method. TS1, TS2 and TS2 were tested on the complete dataset 
of 8 images. TS4 was tested on scenes 1, 3, 4, 5, 6, 7 and 8, 
skipping the scene which generated the learning set (scene 2). 
TS5 was tested in scenes 1, 2, 3, 4 and 5 (the ones containing a 
higher proportion of natural objects, which were not used in the 
training). 

 
Training 

set 
errors L plane M plane S plane 

TS1 
mean err -0.0021 -0.0019 -0.00007 

max(|err 0.056 0.044 0.027 

TS2 
mean err -0.0038 -0.0019 -0.0008 

max(|err 0.067 0.046 0.030 

TS3 
mean err -0.0034 -0.0020 -0.0007 

max(|err 0.056 0.039 0.040 

TS4 
mean err 0.0015 0.0014 0.0017 

max(|err 0.078 0.057 0.048 

TS5 
mean err -0.0022 -0.0023 -0.0013 

max(|err 0.055 0.035 0.054 
Table 2: Summary of the average errors measured for each L,M, and S 

plane for each of the training sets considered. 

Table 2 and Figure 5 show a summary of our results for all 
training sets and tests scenes. The histograms show how the 
errors are distributed in terms of numbers of pixels. All 
histograms show peaks close to 0, which corresponds to their 
small mean errors (shown in the plots). Surprisingly, the errors 
produced by one of the “generalist” methods (the polynomial 
generated by TS1 -Munsell chips) are among the smallest. 

The next “generalist method”, the polynomial derived from 
TS2 (Macbeth ColorChecker samples) is the worst case, both in 
terms of mean error and absolute maximum error. This is not 
surprising giving the small number of samples. The polynomial 
generated by TS3 (NE reflectances database) has not improved 
on the results of TS1, which might be due to its bias towards 
saturated colors, which are relatively unusual in nature. The best 
results were produced by the polynomial generated by TS4, 
applied to the rest of the scenes. The sampling generated by the 
pixels of scene 2 (predominantly chlorophyll) might be a more 
representative model of the reflectances encountered in nature. 
The polynomial generated by TS5 (based on urban surface 
reflectances) was also not bad in terms of mean errors, coming 
on top of those based on NE reflectances and Macbeth 
ColorChecker samples. 

 

 
Figure 4: Thumbnail representations of the hyperspectral reflectance 

scenes used to test the camera RGB to LMS characterization in this work. 

Each scene consists of 1018 x 1339 pixels sampled along the visible 

spectra in 10 nm steps (33 planes per image).More information can be 

obtained from  

http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_im

ages_of_natural_scenes_04.html 

The distribution of errors in terms of chromaticity was also 
explored to see if there was any bias towards specific colors. 
Figure 6 shows the distribution of errors in the CIE 1931 x,y 
chromaticity diagram. Although the gray-levels in Figure 6 
represent mismatches between the chromatic channels in LMS 
cone space, we found more convenient to visualize the position 
of these errors in a more familiar chromaticity space such as the 
CIE 1931. Given the disparity between the maximum values and 
the mean ones, and the presence of negatives, we plot the 
logarithm of the absolute error (log(|err|)) in Figure 6. All plots 
show a concentration of errors along the yellow-greenish 
frontier. This can be explained by the presence of large shadowy 
areas among the leaves, which are prone to noise. The model 
that produces the most even distribution of errors (small errors = 
darker gray areas in the figures) is the one based on TS1 (the 
Munsell chips training set). The other remarkable model (it 
produces a large “peak” of errors mostly in the reddish-pink part 
of the diagram) is the one based on TS5 (urban scenes). This is 
to be expected, since this model should not be particularly well 
suited for the general “naturalistic” scenery. 

Another measure of the characterization error is shown in 
Table 3. The columns show, for each LMS plane considered, the 
relative error, i.e. the averaged difference between the values 
obtained by subtracting the test to the ground truth solution (the 
err), divided by the largest of the two. 

The values obtained in Table 3 are larger than those of 
Table 2 and this is a natural consequence of computing values 
that contain image noise in our calculations. Noise present in the 
images becomes more relevant for lower intensity values such as 
those of shaded areas, and will increase the estimated averages. 
However, it is interesting to compare this measure for the 
different training sets considered. Again the best polynomial is 
that determined by TS4 (Chlorophyll-rich samples) supporting 
the idea that a significant improvement can be obtained by 
“customizing” the dataset to the expected content of the target 
scenes. 
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Figure 5: histograms representing the frequency of errors in terms of the 

numbers of pixels per error interval per L, M or S sensor. The plot also 

shows for each training set (TS1 to TS5) the mean error, and the absolute 

maximum error. 

Training set L plane M plane S plane 

TS1 -0.063 -0.065 -0.047 
TS2 -0.077 -0.065 -0.086 
TS3 -0.067 -0.057 -0.123 
TS4 -0.034 -0.029 0.024 
TS5 -0.031 -0.041 -0.097 

Table 3: mean relative errors for each of the three (LMS) planes 

considered. The errors were calculated by dividing each pixel difference 

(err) in the largest pixel value of the pair, for each (x,y) position in each of 

the 3 planes. The predominance of negative values (systematic error) may 

reflect a slight bias in the camera sensors’ dependency with radiant power 

(gamma-correction). 

 
Figure 6: The first plot corresponds to the locus of all colors contained in 

the 8 images of Figure 4. All other plots show the mean errors (gray-levels) 

as a function of chromaticity (in the CIE 1931 diagram) for each of the 5 

Training sets considered. For ease of representation given the disparity 

between the largest values and the smallest ones, all plots show the 

logarithm of the absolute value of the error. 

 

 

Discussion 
Our tests have shown the feasibility of a “customized” 

characterization of our trichromatic camera, taking on board the 
predicted features of the scenery to be photographed. There are 
many datasets of reflectances that could serve particularly well 
as “training sets” for this characterization. These include the 
dataset tested here and other hyperspectral scenery both urban 
and “natural” available from the Foster-Nascimento 
databases32,34. The decision on whether to choose a training 
dataset or another (e.g. “generalistic” or “foliage-based”) should 
be based on the percentage of pixels that are likely to be present 
in each category and its details will be analyzed in the future. 
However, it is indeed surprising the robustness of the measures 
obtained by applying the Munsell-based polynomial (TS1) to 
various imagery. This has been the default settings for our LMS 
cone sensitivity images to date. The results of these 
transformations are available online13. It might be interesting to 
explore several other ways to improve the overall accuracy of 
the characterization in the future, e.g. by trying a different 

polynomial mapping algorithm along with ways of converting 
images generated by one optimization choice into another. These 
issues will be explored in the future. 
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