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Abstract

Pair comparison methods based on Case V of Thurstone’s
Law of Comparative Judgment are widely used to derive interval
scales for perceptual image quality. A thorough treatment of the
involved statistical errors is often neglected, even though this is
the base for computing confidence intervals and other statistical
tests. In this paper we show, that consequent error estimation
through all steps of the data analysis provides a simple and reli-
able method to compute confidence intervals. Monte Carlo simu-
lations are used to verify the results and to compare the proposed
error estimation with other known methods.
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Introduction

Psycho-visual tests are used for subjectively evaluating the
quality of images. A typical example is the measurement of
the quality of images transformed by gamut mapping algorithms.
There are a variety of methods to carry out such tests. The aim
of the tests is to compare images with respect to perceived qual-
ity. Often an interval scale for the different variants of an image
is computed from these comparisons, where a scale value is a
measure for the relative quality of a specific image variant. For
one important application, namely gamut mapping, CIE guide-
lines for algorithms [1] provide specific experimental methods,
viewing conditions, and reference algorithms. Three kinds of
psycho-visual tests are recommended for evaluating the quality
of gamut mapping algorithms: pair comparison, rank order, and
category judgment. The most widely used method is pair com-
parison. It is also the easiest for the observers, especially if the
differences between the images are small.

A pair of images from a set A is presented to an observer.
He or she is then asked to choose the one that better fulfills in-
structions of the test. In the gamut mapping case, the instructions
usually state that one should choose the more aesthetic image, or
the image more similar to the original. In the latter case the orig-
inal image is shown along with the transformed images.

A thorough treatment of the involved statistical errors is of-
ten neglected, even though this is the base for computing confi-
dence intervals. Morovic [2] gives a simple formula to estimate
confidence intervals. The formula depends only on the number of
observations N per pair of stimuli but not on the number of stim-
uli n. Since then this method seems to have been used in many
psycho-visual studies on gamut mapping. Only a few of them
cite the used formula explicitly [3]. The CIE-guidelines [1] give
a reference to Morovic’s thesis concerning confidence intervals
of paired comparison.

In a recent paper Montag [4] has investigated the problem
of missing dependency on the number of stimuli n using Monte
Carlo simulations. He derived an empirical formula showing ap-
proximate dependency of the estimated error with the square root
of the product of N as well as and n. Newer gamut mapping stud-
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ies have used this formula for error estimation [5]. Older stan-
dard books on psycho-visual scaling [6, 7] give more detailed
description for error estimations, however their results are tied to
their specific data analysis and a direct application to the standard
evaluation of the Thurstone’s Case V is not obvious.

In this paper we will give a direct derivation of error esti-
mation for Thurstone’s Case V. It is based on error propagation.
We will use Monte Carlo simulations to compare the results with
other commonly used methods and to find the region of applica-
bility as a function of the number of observations N the number
of stimuli n and scale value range.

Methodology
Thurstone’s Law of Comparative Judgment

Thurstone’s Law of Comparative Judgment is a method
used for evaluating data obtained in a pair comparison test [8].
It falls into the class of discrete choice models. We consider only
Case V, i.e. that the discriminal differences follow a Gaussian dis-
tribution of equal width and that there is no correlation between
two stimuli. For our methodology we leave it open, whether a
pair comparison test was made by one or several observers. We
also ignore whether a single image or several images were used
in the test. However we make the rather strong assumption, that
all judgments are independent of a specific observer and image.
Furthermore we assume forced choice for the pair comparison
test to avoid treatment of tie choices.

Given a set A of n stimuli, e.g. gamut mapping algorithms,
and choice data of the form i >~ j with i, j € A. We know the fre-
quency f;; (F-matrix) of stimulus 7 being preferred over stimulus
j (number of times i is preferred over j). We consider the propor-
tion g;; (Q-matrix) of stimulus i being preferred over stimulus j
defined by

o fiite 1)

W= i fi+28
as an indirect measure for the distance of the “qualities” (named
scale values) v; of i and v; of j, respectively. We introduced the
bias correction § in order to eliminate numerical problems for
pairs of items, which have zero entries in the frequency matrix.
Except where stated we used in this paper § = 0.2. For a discus-
sion of different bias correction formulae see also Engeldrum [9,
chapter 9.4].

Discrete choice models build on the assumption that the
observed choices are outcomes of random trials: confronted
with the two options i, j € A an observer assigns quality values
u; = vi+ & and uj = v; + €;, respectively, to the stimuli, where
the error terms &; and €; are drawn independently from the same
distribution. The observer then prefers the stimulus with larger
quality value. Hence the probability p;; that i is preferred over j
is given as

Prlu; > uj]
= Pr[vi+8,~ > Vj-f-(;‘j} :Pr[vi—vj > Sj—Si].

Pij
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In Thurstone’s model [8] the error terms &; are drawn from
a normal distribution N(0,2). Thurstone’s Case V model as-
sumes that the variances for all stimuli are equal. The difference
€; — &; is also normally distributed with expectation 0 and vari-
ance 262 and thus

pij = Pr[u,-Zuj]=Pr[v,-fvj28jf£,<]

- o(52)

where @ is the cumulative distribution function of the standard
normal distribution
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This is equivalent to
V[*VJZ\/EGq)il(pU). (2)

Let us notice, that g;; is an empirical approximation of p;;.
Using the proportion g;; of i being preferred over j we set

2ij =P '(qij) [Z— matrix]. 3)

Note, that the Z-matrix is antisymmetric, thus z;; = —zj;.
Mosteller [10] has already mentioned that the least squares so-
lution of the system of equations for the scale values v; can be
determined by averaging the columns

1
Vi = ;ﬁc;zij. 4

In order to fix the arbitrary offset of the scale values, the sum of
all scale values v; is assumed to be zero.

Error estimation.

In order to gauge the statistical significance of differences
between scale values as well as for statistical tests a good error
estimation is needed. In this paper consider the estimated stan-
dard deviation of a value as the estimated error of that value.
These estimated errors serve as a basis for the calculation of
confidence intervals and other statistical tests such as y2-tests.
Typical applications are model verification using Mosteller’s Test
or the testing whether scale values from different data sets (e.g.
expert versus general observers) are statistically indistinguish-
able. There are a few known methods for estimating errors for
the Thurstone Case V, which will be described in the following.

Morovic’s error estimation. Morovic [2, chapter 4] gives the
following formula to estimate the 95 per cent confidence interval:

o (5)

VN

Witho =1/ v/2 we can compute the underlying estimated stan-
dard deviation for the scale values

Cls = 1.96

Ep=1/— (6

Montag’s error estimation. Montag [4] has published an em-
pirical formula for the estimated standard deviation of scale val-
ues based on Monte Carlo simulations.

E, = by (n—b)" (N —by)"s (7

with b} = 1.76, by = —3.08, b3 = —0.613, by =2.55 and bs =
—0.491. It shows the expected approximate dependency of the
estimated error with the square root of the product of N and n
(b3 = —0.5 and b5 = —0.5).
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Analytic error estimation. Here we derive an analytic error
estimate for Thurstone’s method. The basic approach is to es-
timate the error in the image choice process and then propagat-
ing the error through the data evaluation steps: This process of
choosing one image from the pair of images can be modeled as
a Bernoulli trial with success probability p;;. The standard de-
viation for p;; equals to the standard deviation for a Bernoulli
variable in N trials

pij(1—pij)

5 ®)

Opij =

As we approximate p;; by the empirical value g;; the es-
timated error E,; for the proportion g;; in equation (1) can be
written as

gij(1 —gij)

fij+fi+28° ©)

Eqy = 0qy =

To compute the errors of the entries z;; in the Z matrix, we
propagate the error using equation (3)

d &-1
Ey; =Eq; Eijq) (4ij)- (10)
Using equation (4) the errors of the scale values v; are com-
puted as

1
E,=-V2o | Y E2. (11)
n beAazb

Approximation of errors. An approximate error estimate can
be derived for Thurstone’s Case V if the probabilities p;; are not
far from 1/2. Then their standard deviation is

/1
Ey,; ~ const = N (12)

and the error of the Z-matrix elements z;; can be approximated

as
1 d
E,~ ) ——! 1
g ® @ (13)

for g = 0.5 yielding

T
B~y o (14)

independent off i and j. Assuming ¢ = 1/+/2 the error for
the scale values v; is approximatively

1 [x(n—1)
Evr- N =N s)

independent on i. This formula shows also the expected approx-
imate dependency of the estimated error with the square root of
the product of N and 7 if » is not too small.

Experimental error estimation. Experimental error estima-
tion [11] is an approach complementing above methods. It is
based on a minimum of assumptions. It samples the error by
dividing the choice data randomly into two groups. For both
groups scale values are individually computed and errors are es-
timated from the differences of the values obtained from both
groups. This process is repeated several times and the results
are averaged to increase the accuracy of the error estimation. If
all model assumption are fulfilled this error estimation should
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Figure 1.
and circles are for simulated errors and lines are for estimated errors.

within the statistics deliver the same error as the one obtained
from analytic error estimation.

A special option of this method is to test the heterogeneity
among the observers (or among the individual images). In this
case individual observers (or individual images) are randomly di-
vided into two groups and errors are computed from the average
difference of the scale values between the two groups. Here er-
ror estimation using such biased samplings allows to test whether
the choices depend on individual observers (or images).

Relation of error propagation with Mosteller’s
test.

Based on the error estimation Eg,; the error of the arcsine
transformed scale values 6;; = arcsin(2¢;; — 1) can be derived
using error propagation

d .
Eg;j = Eq,, ——arcsin(2g;; — 1)) (16)

dqij
Using equation (9) and the derivative of arcsin the errors of
the 6;; values simplify to

Ee":\/qij(lf%'j) 1 _
Y N qij(1=qij) VN

This result confirms the usefulness of the arcsine transfor-
mation in Mosteller’s x2 test. With this transformation the vari-
ance of the 6-values is independent of the proportion ¢;; and de-
pends only on the number of observations N.! Thus estimation

an

Note, that if we want to find a transformation which has the property
of equalizing the standard deviation of all probability values p;; based on
eq. (8) we end up with an arcsine function.
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Simulated scale value errors Es compared to error error estimates E,, (eq. 6), E. (eq. 7) and E, (eq 15) for different number of stimuli. Triangles

of errors and confidence intervals based on the arcsine transfor-
mation can be linked to the error estimation of the scale values
by error propagation.

Simulation

We used Monte Carlo simulation in order to compare the
different error estimations and to investigate their validity as a
function of the number of observation N, the number of stimuli n
and the scale value range. For all simulations we assumed a psy-
chological continuous scale that conforms to Thurstone’s Case
V, i.e., that the discriminal differences follow a Gaussian distri-
bution of equal width and that no correlation exist between two
stimuli i and j. Furthermore we assumed no correlation neither
in the responses of an individual observer nor in responses for
an individual image. Thus ideal conditions are assumed for the
simulated experiments.

Simulation for small scale values

The first series of simulation experiments was set up to com-
pare the analytic error estimation with the estimation and sim-
ulation given in Montag’s [4] article. We used the following
number of stimuli n = [4,7,10,15]. The number N of observa-
tions per pair of stimuli was in the range of [10...60]. We used
stimuli with small scale value differences compared to the width
of the distribution of the discriminal process. Thus the n scale
values were assumed to be uniformly distributed in the range
[—0.25... 4+ 0.25]. Each experiment was repeated 10’000 times
for each combination of parameters. The simulated error E; of
the scale values was calculated using the standard deviation of
the scale values from the experiments. Furthermore it was veri-
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fied, that the average scale values extracted from the simulation
compare to the scale value of the model with an accuracy well
within the error estimation. Three different values for the bias
correction were used in the simulation (6 = 0.1, 0.2 and 0.5).

In Fig. 1 the experimental error E; is compared to the error
estimates E,, (eq. 6), E, (eq. 7) and E, (eq. 15). The error E,,
generally overestimates the simulated error E5. The overestima-
tion increases with the number #n of stimuli. The error estimates
E, and E, are in good agreement with the simulated error for all
investigated combinations of #n and N and compare well with the
results given by Montag [4]. The differences between E, and E,,
get smaller with higher N. For small N the differences are in the
variability range of different bias correction values 8. Simulated
errors using a bias correction 6 = 0.1 follows Montag’s error es-
timation E,, where a use of 6 = 0.5 is in good agreement with
E,.

Error simulation for individual scale values

The estimated error E,, in eq. (11) depends on the scale
value. This dependency gets important as soon as the percentages
gij differ substantially from 0.5. In a second series of simulation
experiments this dependency has been investigated. We used the
following parameters: The number of stimuli was n = [4,8,16],
the n scale values were assumed to be uniformly distributed in the
range [—1.0... + 1.0]. The number of observations was fixed to a
rather large number N = 200 to avoid a significant influence of
bias corrections. The result is shown in Fig. 2. Each experiment
was repeated 10’000 times for each combination of parameters.

0.1
——E_vi(n=16) e E_s(n=16) ----E_v (n=16)
—E_vi (n=8) o E_s(n=8) ----E_v(n=8)
0.08 1 —E. vi(n=4) = E_s(n=4) --—E_v(n=4)
== E_m

e

o

>
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o
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Figure 2. Simulated scale value errors as a function of z-scale compared
to error estimations for different number of stimuli. squares and circles are
for simulated errors, full lines for estimated errors E,,, dashed lines for E,,
andE,.

The simulated error E; is increasing with higher absolute
scale values. This increase is nicely reproduced by the error es-
timation E,, given in eq. (11). The error approximation E, can
be regarded as a lower limit for the simulated error. The same is
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true for E, which, for this high number N, is basically identical
to E,.

Accuracy of error estimation

A third series of simulation experiments has been performed
to test the accuracy of the four error estimations E,,, E,, E, and
E,, as a function of N, n and the scale value range. For this
purpose we investigate the relative accuracy in percentage of the
error compared to the simulated error. Within one specific exper-
iment the maximum relative deviation of an estimated error from
the simulated error was taken as a measure for the accuracy of
an estimated error. 40 different scale value ranges were used up
to [—2.0...2.0], N was in the range [2..100] in steps of 2 and the
number of stimuli n was [3,4,5,8,12,16]. For each experiment
scale values for n stimuli were selected as follows: n values x;
were randomly chosen in the range [—1.0... + 1.0]. Then these
values were scaled such that the difference between the mini-
mum and maximum scale corresponded to the target scale value
range. For each combination of N, n and scale value ranges the
experiment was repeated at least 2000 times and simulated errors
E;, average scale value errors E,,, approximate errors E,, and E,
were calculated. In Fig. 3 we show the results for 3, 5 and 8
stimuli.

The error estimation E,, is accurate in a range of 20% only
for n = 3. It is not accurate for larger number of stimuli. This
confirms, that the error estimation E,, should, if at all, be used
only for a small number of stimuli, i.e. smaller than five. The
error estimations E, and E, have regions with high accuracy for
all numbers of stimuli, but only for small and moderate scale
values up to about 1.0. For these scale value ranges, the error
estimation for all scale values are approximately equal and E,
(as well as E,) give a simple, quick and accurate error estimation.
The best error estimation is given by E,,. The accuracy is better
than 10% for all number of stimuli » and number of observations
N up to a limiting scale value range. The limiting scale value
range basically scales with the square root of N. The limit is
reached when one or more expected f;; in the frequency matrix
are close to or smaller than one. Interestingly the accuracy of the
error estimations E,, E,, and E, depend only marginally depend
on the number of stimuli 7.

Discussion

The simple error estimation given by Morovic [2] gener-
ally overestimates the error and is approximately correct only for
small number of stimuli (n & 3...4). It is not suitable as a general
error estimation method.

For many cases the error approximation E, as well as the
empirical error estimation E, given by Montag [4] are sufficiently
accurate. The advantage of deriving the error approximation an-
alytically (as for E, and E,,) is, that an adaption to other dis-
criminal distributions such as the logistic distribution of Bradley-
Terry [12] is straightforward. The inverse cumulative distribution
function ®~! and its derivative in equations (3), (10) and (14)
have to be replaced by the appropriate functions. Furthermore
note that an empirical formula is always restricted to the param-
eter range used in the fitting process. It is questionable, whether
the formula given by Montag can be extended to n < 4 or to large
N. Tt will even fail for the (trivial) case of n = 2, because the pa-
rameter by is larger then 2.

From Fig. 3 we can define a validity range of error estima-
tion if we assume some limit for the accuracy. It is reasonable
to assume that error estimation has to be accurate to 10%. Then
the approximative errors E,, (eq. 7) and E, (eq. 15) are good ap-
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proximations for all large enough number N of observation, as
long as the range of the scale values is small enough. The upper
limit for the scale value range for large N is just above 1.0. The
validity range of the error estimation E,, extends to much higher
scale value range. The limiting factor of this error estimation is
the expected number of judgments for the least probable entry in
the frequency matrix f;;. This is due to the fact that the entries
in the Z-matrix column z;; are averaged and the error of the en-
try with the highest error also has the highest contribution to the
error of the scale value v;. A weighted linear regression method
such as described by Bock and Jones [6, chapter 6] could give
more accurate scale values with smaller estimated errors in the
case of a large scale value range. For these cases the proposed
error estimation E,, has reached its limit.

In all our simulations we assumed the ideal Case V of Thur-
stone’s Law of Comparative Judgment. Note that besides ac-
curate computation of scale values also the estimation of their
error is valid only if the underlying assumptions are valid. For
example, if Mosteller’s test fails the error estimation must also
be questioned. Furthermore, correlations within individual ob-
servers’ choices or within individual images have to be tested for
example by using experimental error estimation [11]. If enough
data is available for individual observers, a comparison of intra-
observer errors with inter-observer error estimations [2] can also
be used to verify whether such correlations have to be taken into
account. The latter method can also be adapted to compare intra-
image errors with inter-image errors.

Conclusion

We have shown, that analytic error estimation using error
propagation gives good results for data evaluation of psycho-
visual data using Thurstone Case V. The effort for this error
computation is as small as the computation of the scale values
themselves. This error estimation method should replace previ-
ous methods because it can be applied for a much larger range
of psycho-visual scales. The simulation was based on an ideal
Thurstone Case V model. Future simulations including corre-
lations among individual users or individual images could give
further insight to improve error estimation.
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Figure 3. Accuracy map of error estimation methods E,, (top), E. (upper middle), E, (lower middle) and E,; (bottom) for number of stimulin = 3 (left column),
n =15 (middle column) and n = 8 (right column). Number N of observations is on vertical axis and scale value range on horizontal axis. Regions with an error
estimation accuracy better than 10% are shown in white, those between 10% and 20% in gray and accuracies worse than 20% in black.
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