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Abstract
Understanding how colour is used by the human vision sys-

tem is a widely studied research field. The field, though quite ad-
vanced, still faces important unanswered questions. One of them
is the explanation of the unique hues and the assignment of color
names. This problem addresses the fact of different perceptual
status for different colors.

Recently, Philipona and O’Regan have proposed a biolog-
ical model that allows to extract the reflection properties of any
surface independently of the lighting conditions. These invariant
properties are the basis to compute a singularity index that pre-
dicts the asymmetries presented in unique hues and basic color
categories psychophysical data, therefore is giving a further step
in their explanation.

In this paper we build on their formulation and propose a
new singularity index. This new formulation equally accounts for
the location of the 4 peaks of the World colour survey and has two
main advantages. First, it is a simple elegant numerical measure
(the Philipona measurement is a rather cumbersome formula).
Second, we develop a colour-based explanation for the measure.

Introduction
Opponent space has been defined as a confrontation of non-

mixable colours. That is, it is impossible to perceive a reddish
green, neither a yellowish blue. These four colours: red, green,
yellow and blue are considered ’cardinal’, and their hues are con-
sidered unique hues. However, there is not a widely accepted
theory explaining this uniqueness. Since, opponent theory does
not adequately predict the hues perceived perceptually unique
[16],[8].

Whether if opponent theory is underlying it or not, what is
widely assumed is the asymmetry in human perception of dif-
ferent color surfaces. Specific color properties hold a different
status in the perception, such as, red, green, yellow and blue,
and possibly purple, orange or pink for specific cultures. Expla-
nations for this fact could be essentially found in the neuronal
representation of color in the human visual system [10] [11], or
could be given by cultural or linguistic facts [6], but is an open
issue.

How this asymmetric perception can be achieved in the hu-
man visual system has been studied in a recent work by Philipona
and O’Regan [11]. In this work they explore the hypothesis of a
representation that copes with the reflection properties of sur-
faces independently of the lighting conditions of the observa-
tion. They build a linear biological model by finding a linear
constraint between the tricromatich representation about the il-
luminant and the tricromatich representation about the reflected
light. This is a biological approach towards what physicists de-
fine as reflectance: the relationship between the spectrum of light
illuminating a surface and the spectrum of light reflected by the
surface. Practically, this is equivalent to the relation between the

RGBs of a surface under different lights with an achromatic sur-
face viewed under the same light set. For each surface, this linear
model finds a matrix containing the reflectance properties which
are illuminant invariant. They propose the eigenvalues of this
matrix as a triplet representing the inherent reflectance proper-
ties of the surface. We will denote these coefficients as (rs

1,r
s
2,r

s
3)

where s represents the surface that is being represented with this
triple of coefficients.

These reflectance coefficients are used to compute a singu-
larity index that will quantify the special case or the degree of
asymmetry of the corresponding surface. This index is built in
such a way that it allows to predict the psychophysical data of
the unique hues or the color names of the World Color Survey
[1]. The formulation for this Singularity Index is based on or-
dering the coefficients, rs

1 > rs
2 > rs

3, and they are related in this
way
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finally, the singularity index is given by maximizing a nor-
malized version of them

SI = max

(
β s

1
max(β s

1)
,

β s
2

max(β s
2)

)
. (2)

Although this index is predicting the asymmetries, the for-
mulation is not compact and is defined in a very ad-hoc way to
predict the asymmetric properties of the color categories. More-
over, it is not related with any known property of colour. In this
paper we focus on these two points. We propose a new singular-
ity function, completely compact, and related with well-known
colour measures, such achromaticity. We will show that this our
formulation also predicts the unique hues and matches the World
color survey data as well as the previous formulation.

The paper is divided as follows. In the next section, we will
explain the details of the mathematical background, where we
base our approach. Later on, we develop our singularity func-
tion and we show the results of our predictions versus the psy-
chophysical data of the mentioned sets.

Mathematical Background
The linear biological model introduced in [11] is built on

the assumption that human vision system it is able to extract the
reflection properties of the world surfaces independently of the
lighting conditions of the observation. It brings to a canonical
representation of the reflectance.

This model is based on the computation of the CIE R,G,B
coordinates ro represent physical properties of the light reflected
by a surface achieving the observer eye which lose part of the
colour information due to the photopigments absortion. This is
referred as the accessible information by the authors [11].
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This model will find a matrix containing the surface re-
flectance properties for each surface. From these matrix, we are
able to extract a colour triple (reflectance) that is the colour of the
surface independent from the illuminant. Once they obtain this
triple, they developed a formulation that explains the location of
WCS color names and unique hues.

To build the data they select a wide number of illumi-
nants and reflectances. Moreover, they select the photopig-
ments. For photopigments they used the 10-deg Stiles and Burch
Color Matching Functions (CMFs) [14] (they checked that us-
ing Stockman and Sharpe [15] cone fundamentals the results do
not present any noticiable modification). For the set of illumi-
nants (from now on set E) they used the 99 daylight spcetra from
Romero [13] et al, a Gaussian sample of 200 spectra constructed
from the basis functions S0, S1, S2 derived by Judd et al [5] ,
and the 239 daylight spectra from Chiao et al [3]. Finally, the
reflectances used are the set of 1600 Munsell glossy chips from
Joensuu [9]

Firstly, we define vs as the accessible information about the
reflected light for a given surface s

vs
i =

∫
w

Ri(λ )S(λ )E(λ )dλ , i = 1,2,3 (3)

where λ is a set of wavelengths,E(λ ) the spectral power
distribution of the light in each wavelength, Ri(λ ) the absorption
of photopigments presents in L,M and S photoreceptors respec-
tively and S(λ ) the reflectance of a surface.

Secondly, we define u as the accessible information about
the incident illuminant

u =
∫

w
Ri(λ )E(λ )dλ , i = 1,2,3 (4)

from these two equations we can solve by linear regression

vs = Asu (5)

for a set of illuminants E. This equation uses only the infor-
mation about light that is (physically) accessible to an organism
given the photoreceptors it posseses. This means, that matrix As

is containing the surface reflectance properties inside it.
Mathematically we will solve the matrix As by linear regres-

sion, and as As is a 3-by-3 matrix, it will be diagonalized

As = (Us)−1V sUs (6)

where V s is a diagonal matrix containing the eigenvalues of
As and Us containing the respective eigenvectors. Philipona and
O’regan in their paper show that they form a basis, and then, these
eigenvalues are a colour triple relating the surface reflectance and
a white reflectance.

After that, Philipona and O’Regan also develop a formula-
tion that by using this colour triple show the relation between
these eigenvalues and the four main color Names and the four
unique hues. This formulation is the one explained in the In-
troduction where (rs

1,r
s
2,r

s
3). are the eigenvalues for a particular

surface in decreasing order. Then, they define the equation 1 that
will give high numbers if one or two of the values are close to
zero. Finally, they define the singular index SI as shown in equa-
tion 2. From now on, we will use (r1,r2,r3) instead of (rs

1,r
s
2,r

s
3).

In this paper we will use the framework explained for
obtaining the color triple, but we will use this colour triple
in order to improve the formulation defined by Philipona and
O’Regan since their formula is complex. Normalization is
needed and there is no specific colour information. Then, our
idea in the next section is to find a less complex formula also
relating the results to some well-known color measures.

Singularity Function
In this section we propose a new singularity index that pur-

suits a simpler and more compact formulation with specific prop-
erties. First property will be to have a measure that should be
independent of the order of the values, that means, the triple
(r1,r2,r3) being the eigenvalues of a matrix AS of a surface S,
can be given in any order since the formulation will extract the
relative information of each component over the other two. A
second property we want to fulfill is to normalize independently
of which is the maximum value of the components. Our proposal
is to boost the importance of a particular coefficient over the other
two by a mathematical function. To this end, we propose to use
a cubic function normalized by the product of the components,
this is to compute the terms

I1 =
r3
1

r1 · r2 · r3
(7)

I2 =
r3
2

r1 · r2 · r3
(8)

I3 =
r3
3

r1 · r2 · r3
(9)

Once, the components has been normalized and boosted,
they can be simply combined by a sum. In this case, if the surface
has a singularity it will be reflected in at least one of the these
three components, and it will eventually appear in the addition,
hence our Compact Singularity Index (CSI) is given by

CSI = I1 + I2 + I3 =
r3
1 + r3

2 + r3
3

r1 · r2 · r3
(10)

Let us now continue explaining different properties that can
be derived. Firstly, let us explain the formulation from a color
basis point of view. In the previous section we showed that the
triple (r1,r2,r3) of the reflection properties of a surface where
derived as the eigenvalues of a matrix. Then we can consider
the orthogonal basis formed by the corresponding eigenvectors
{u1,u2,u3} as the basis of a 3D color space where the reflection
properties can be considered as the color of a surface. In this
color space, achromatic surfaces will have three equal reflection
coefficient and will cope the diagonal axis of the space (this fact
relates this new space to an RGB space). Then, in this space our
formulation will represent a chromaticness measure that can be
computed as the determinant of the following matrix

M =

⎛
⎝ r1 r2 r3

r2 r3 r1
r3 r1 r2

⎞
⎠ (11)

that is given by

det(M) = r3
1 + r3

2 + r3
3 −3 · r1 · r2 · r3 (12)

whose normalisation brings to the compact singularity func-
tion

det(M)
r1 · r2 · r3

=
r3
1 + r3

2 + r3
3 −3r1r2r3

r1 · r2 · r3
(13)

=
r3
1 + r3

2 + r3
3

r1 · r2 · r3
−3 (14)

∝
r3
1 + r3

2 + r3
3

r1 · r2 · r3
(15)

= CSI (16)

(17)
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a b
Figure 1. a) Berlin and Kay psychophysical data for evolved languages b)WCS psychophysical data for unwritten languages

another interesting property is its independence to intensity
if it is considered as a color representation, this is

(s · r1)3 +(s · r2)3 +(s · r3)3

(s · r1) · (s · r2) · (s · r3)
=

=
s3(r3

1 + r3
2 + r3

3)
s3 · (r1 · r2 · r3)

=
r3
1 + r3

2 + r3
3

r1 · r2 · r3
(18)

Finally, we introduce another interesting property of this
formulation, since it can be seen as an approximation of the per-
ceptual space given by

r1 = ρ
1
3

1 ,r2 = ρ
1
3

2 ,r3 = ρ
1
3

3 (19)

Hence, by replacing equation 19 in equation 10 we found

CSI =
r3
1 + r3

2 + r3
3

r1 · r2 · r3
=

ρ1 +ρ2 +ρ3

ρ
1
3

1 ρ
1
3

2 ρ
1
3

3

=

=
ρ1 +ρ2 +ρ3

(ρ1 ·ρ2 ·ρ3)
1
3

∝
aritmean
geomean

(20)

where aritmean refers to the arithmetic mean and geomean
refers to the geometric mean in a perceptual space.

Results
In this section we show the results in two experiments that

use two different sets of data. First experiment will show how
the CSI predicts the World Color Survey CS data [1] (WCS),
that can be resumed as the prediction of the 4 universally unique
colours. In the second experiment we will deal with the problem
of finding the unique hues.

Experiment 1
WCS data was collected in order to extend the elementary

theory of colour names developed by Berlin and Kay in 1969
[2]. In this early book they proposed an schema of how colour
names correlates with the degree of evolution of different lan-
guages, converging to the most evolved ones as those having 11

basic terms. They provided psychophysical data for 20 written
languages. With the goal of generalizing the results of this early
experiment WCS data compile a similar experiment but with a
wider range of languages and samples. Conclusions are not ex-
actly the same. Six basic colours arise in this experiment: red,
green, blue, yellow, black and white instead of the 11 proposed
earlier. Their universality is still a controversial topic being sup-
ported in [6],[7], while contradicted in others [4],[12].

To recap, while Berlin and Kay original psychophysical data
is collected from speakers of 20 written languages (where all the
subjects spoke also English) and it finds 11 colour categories (8
of them chromatic: red, green, blue, yellow, pink, purple, orange
and brown), WCS data is collected from 24 native speakers of
110 unwritten languages and it concluded that 6 colors arised
(4 of them chromatic: red, green, blue, yellow). These last four
colours are considered as the universal colours due to they appear
in all the languages. See Figure 1 where we show both Berlin &
Kay chromatic data 1.a, and WCS chromatic data 1.b.

Then, we will use our compact singularity index to fit the
chromatic WCS data. We will then, for each chip in the dataset,
use its reflectance to construct the matrix As and the reflection
components (r1,r2,r3). Once we obtain these values we will
compute the compact singularity index for the surface. In fig-
ure 2 we can compare both singularities indexes (Philipona and
O’Regan (SI) and our (CSI)) versus the WCS data. Figure 2.a
represent the contour of the WCS data, where clearly the four
colours appear. Figure 2.b is the contour produced by the sin-
gularity index developed by Philipona and O’Regan. Figure 2.c
represents the contour produced by our compact singularity in-
dex. Here we can observe that the local maxima is close to the
WCS data. Moreover, comparing figures 2.a 2.b and 2.c we can
conclude that our formulation fits really well the blue and the yel-
low (better than Philipona and O’Regan) while in the red colour
our CSI index obtains two local maxima (one perfectly located
while the other is a few displaced), but when considering the in-
fluence region for both these maxima, the red region fits well
with the WCS data. In both cases the green region is also well
fitted.

The comparison of these results can be observed in figure
2.d where we plot an overlapping of the contours of the WCS
data (Figure 2.a) and the level curves representing SI index (Fig-
ure 2.b). And in figure 2.e we plot the contours of the WCS data
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Figure 2. a) World Color Survey Data contour plot b) Philipona and O’Regan Singulariry Index plot c) Our CSI index plot d) Combination of (a) and the level

curves of (b)(in red) e) Combination of (a) and the level curves of (c) (in red)

(Figure 2.a) and the level curves of our CSI index (Figure 2.c).

Experiment 2
Unique hues are still an open problem. There is not an ac-

cepted theory explaining the arise of this four unique hues [16].
Until now, neither the trichromatic theory nor the first oppo-
nent stages have dealt with an explanation of them. However,
Philipona and O’Regan’s biological model approximates effi-
ciently these unique hues locations. Following their idea, we will
also try to fit these unique hues by using our CSI index.

In order to use our formulation to fit unique hues we will
make a similar assumption as is done in previous work. This
means trying to simulate experiments where observers classically
face ’aperture colours’. The main problem is while in these ex-
periments the stimuli is created through the use of lights of con-
trolled spectra composition projected directly into the eye, in our
case the index works with surface properties. Then, we will use
the assumption that the stimuli produced by these experiments is
equivalent to the stimuli produced by the observation of a surface
reflectance under the most common illuminant, D65.

Moreover, following again Philipona and O’Regan’ paper,
we will simplify the representation of the reflectances by using

sums of only three basis functions, and we will plot the results of
our Singularity Function in the CIE 1931 chromatic coordinates
[17].

We have used as reflectances all the set of chips in the Mun-
sell book. Our results are plotted in figure 3. In particular, in 3.a
we can observe that again the four local maxima of our function
are located on the position of the four unique hues. Moreover
in figure 3.b we plot the contour of the surface in 3.a to better
classify our local maxima.

Conclusion
Different approaches have previously tried to explain the

perceptual asymmetries of colour, in particular, unique hues have
been revealed as a key point on this research. However, the prob-
lem of unique hues is still open to debate. In this paper we have
gone further in the idea developed by Philipona and O’Regan in
[11] using their biological model to develop a new formulation
regarding color properties (chromaticity). We have proved that
our new compact singularity function (CSI) fits very well both,
World Colour Survey data and Unique Hues data.

Moreover, the advantages of the new Compact Singularity
Index (CSI) are twofold. Firstly, CSI formulation is completely
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compact, while previous formulation [11] is cumbersome. Sec-
ondly, CSI is related to a well-known colour measure about chro-
maticity.

However, considerable amount of work still needs to be
done in this area. Firstly, Philipona and O’Regan biological
model deals with some complex eigenvalues that are truncated.
These complex eigenvalues leads to some numeric errors. Sec-
ondly, the fitting of data should be improved by going further into
the CSI index and relating it to other colour properties.
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Figure 3. a) Unique hues founded by our formula represented in the CIE xy Space b) Contour plot of our unique hues in the CIE xy space
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