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Abstract
We 1 present a new robust method for recovering the spec-

tral sensitivity of digital cameras and scanners. It is well known
that the recovery of camera spectral sensitivities is an ill-posed
problem. To stabilize the solution to the problem constraints
are often imposed on the solution space. Among common con-
straints are: non-negativity, degree of smoothness, number of
peaks, noise level bounding and that estimated curves result in
the lowest possible error between predicted and measured data.
These constraints are not always physically justified; and impos-
ing them on the solution space can result in poor estimates that
adhere only to our expectations of sensor curves.

Knowing that all previous methods result in perfect sensor
prediction when the data is noise-free, we introduce a robust al-
gorithm that enables the user to heavily dampen the impact of
noise and outliers on the solution. By controlling the effect of
noise we show that the only additional constraint needed is the
physically feasible non-negativity. Despite being iterative the
method is computationally fast and simple to implement.

To evaluate the new method, we used data from real trichro-
matic camera systems as well as simulated data. The results
support our assertions that controlling the noise results in bet-
ter sensor estimates.

Introduction
Camera sensor calibration is the problem of estimating the

device’s spectral sensitivities from its responses to a number of
spectrally different surfaces. Generally, there are two approaches
to solving the spectral calibration problem: one based on phys-
ical measurements and one based on a theoretical model. The
physical approach, using a monochromator, gives an accurate es-
timate of the spectral sensitivities, but it is expensive and time
consuming to use. The model-based approach is cheaper and
provides insight into the characteristics of the camera system. It
is based on solving a linear equation system of the form:

Bϒ = B−ϒ = AX (1)

Here A is the m× n matrix of measured color signals, X is a
n× l dimensional matrix whose elements are the spectral sen-
sitivities, B is of size m× l and contains the measured camera
responses and ϒ is an acquisition noise matrix of size m× l.
The color signals are the component-wise products of the illu-
mination spectrum and the reflectance spectra; l is the number
of sensor sensitivity functions of the camera, m is the number
of surfaces used and n the dimension of the spectral data. Typi-
cal values are; n = 31, corresponding to a 10nm sampling of the
wavelength range 400nm to 700nm and l = 3 for an RGB-camera.

The goodness of the solution for the spectral sensitivities
based on Equation (1) depends on two main factors: the noise
level in the response data ϒ and the statistical properties of the
spectral data available from the calibration chart (the matrix A).

1The authors’ list is alphabetical.

Estimation of X from the RGB measurements Bϒ and A is a typ-
ical inverse problem and standard methods from linear algebra
are often used to solve it.

The findings in Reference [1] indicate that the uncertainty
surrounding spectral recovery is related to the size of the recov-
ered set and governed by factors such as: the noise level, the
dimensionality of the spectral data, and the constraints imposed
on the solution space. In Reference [2] the authors constrained
the sensors to be positive, smooth, and to predict the responses
within an acceptable noise bound. In Reference [3] the authors
added a constraint on the number of peaks allowed in the recov-
ered sensor, while the authors in Reference [4, 5, 6] constrained
the sensor’s magnitude to be small. All these methods in Refer-
ence [4, 5, 6, 3, 2] require that the recovered sensor minimizes
the difference between the measured and estimated responses.

Although, these constraints improve upon the stability of the
solution, their influence on the recovered sensor is determined
by their physical justification. As an example: measured data
clearly shows that a number of sensors exhibit more than one
peak. Further, constraining the sensors to be smooth means that
no sharp transitions are allowed in the solution: This is not al-
ways the case. Finally, imposing a constraint on the noise level
requires a priori knowledge of the noise statistics and can result
in false predictions in the case when a number of measured points
are outliers. Thus we state that: Ideally no constraints that are not
guaranteed to be true, should be imposed on the solution space.
Thus in the case of sensor recovery, the only constraints that are
always physically satisfied are non-negativity and that the sensor
is orthogonal to the metamers plane, Reference [7].

In this paper, we present a new iterative method to solve
a general linear system of equations with a view to solving the
problem of sensor estimation from real camera data. The method
has a number of advantageous characteristics including: It is
mathematically rigorous and transparent, i.e. it is guaranteed
to yield the true solution in the ideal noise-free case. It is also
robust to noise by virtue of a formulation that is based on aver-
aging the solutions obtained from the calibration data, i.e. if the
noise is a random variable, then the solution will be very similar
to that obtained in the noise-free case. The robustness to noise
can be further enhanced by controlling the number of iterations.
It is also possible to impose constraints on the solution space,
however, in our implementation the only constraint used is non-
negativity. Finally, the method is fast, simple and lends itself to
hardware implementation.

The basic idea in the proposed method is that geometrically
the solution vector, the sensor, is the intersection point of all the
m planes that are orthogonal to the spectral functions (calibration
surfaces). Thus at each iteration step, we find m sensors that
satisfy the individual m equalities ax = b, i.e. for each surface
a solution is obtained. The result at a given iteration step is the
average of the m sensors.

The proposed method can be thought of as a special im-
plementation of Projection onto Convex Sets POCS. In POCS,
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however, a guess solution, at a given iteration level, is the con-
secutive projection onto each of the different sets. The solution is
found when a convergence criterion is met. In our formulation,
the guess solution, at a given iteration level, is projected onto
each set independently and the result is the robust average value.
It is this averaging that makes our formulation more robust to
noise and ensures the uniqueness of the solution.

Method Description
We start our presentation of the proposed algorithm by a

number of definitions. First we define a hyperplane Pi as:

Pi : aix = bi (2)

where ai is ith row vector of the matrix A, i.e. the measured spec-
trum of the ith calibration surface and bi is the corresponding
camera response at a single channel, red, green or blue. Mathe-
matically, the solution to the linear system of the form Ax = b is
the intersection point of all the m hyperplanes Pi.

Secondly, we define a distance from an arbitrary guess value
x to a hyperplane Pi as:

D(x,Pi) =
bi

‖ ai ‖ −nix (3)

where ‖ ai ‖ is the second norm of ai and ni is defined as:

ni =
ai

‖ ai ‖ (4)

Thirdly, given a solution vector xk at the kth iteration level we
define, for a single spectrum ai, a solution vector xk+1

i as:

xk+1
i = D

(
xk,Pi

)
ni + xk (5)

Knowing that xk+1
i is the solution for each aixk+1

i = bi we define
the solution x at iteration level k +1 as:

xk+1 =
1
m

m

∑
i=1

xk+1
i (6)

The non-negativity constraint is implemented as a simple clip-
ping of the negative values at each wavelength λ , i.e.:

x(λ )k+1 =

{
x(λ )k+1 i f x(λ )k+1 ≥ 0
0 i f x(λ )k+1 < 0

}
(7)

To clarify the description of the proposed algorithm we out-
line the first three iterations k = 0 · ·2. To aid the discussion we
make use of the 2-dimensional example depicted in Figure (1)
where two vectors n1 = a1

‖a1‖ and n2 = a2
‖a2‖ are considered to-

gether with their corresponding orthogonal lines P1 and P2 (P1
and P2 are hyperplanes in the n-dimensional case). We start by
setting x0 = 0 where 0 is a vector whose elements are all zeros.
Thus formally at iteration level k = 0 we have:

x0
i = 0 ; x0 =

1
m

m

∑
i=1

x0
i = 0 (8)

where m is 2 in the example of Figure (1).
At iteration level k = 1, we then have:

x1
i =

bi

‖ ai ‖ ; x1 =
1
m

m

∑
i=1

x1
i (9)

and finally, at iteration level k = 2 we have:

x2
i = D

(
x1,Pi

)
ni + x1 ; x2 =

1
m

m

∑
i=1

x2
i (10)

For k > 2 Equations (5) and (6) are consecutively employed
to obtain the subsequent iteration level. Notice that the non-
negativity constraint stated in Equation (7) is employed at each
step.

As the algorithm converges towards a solution a stop crite-
rion must end the number of iterations. A stop criterion can be
constructed in a number of ways. Firstly, the maximum num-
ber of iterations kmax can be decided upon by the user directly.
Secondly, it is possible to define a convergence criterion such as:

kmax : ‖ xkmax − xkmax−1 ‖≤ ε (11)

where ε is small positive value. Alternatively, it is possible to
check the goodness of the fit between the estimated responses
best = Axk and those recorded by the camera b.
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Figure 1. In a two dimensional space (λ1, λ2), two intersecting planes P1

and P2 are depicted. The planes have unit length normal vectors n1 and n2

respectively. xk is the guessed value of the intersection point after k itera-

tions. The iteration starts at x0 in origo and converges towards xk through

x1, x2,...,xk. x0 is projected to the planes P1 and P2 perpendicularly. The re-

sulting projection points on the planes are averaged and equals the guess

value of the intersection at the first iteration level. x1 is projected to P1 and P2

and the resulting projection point are averaged and so forth. The iterations

stop when the stop criteria is met.

Robust Averaging
As shown in Equation (6), the resultant sensor estimate at

each iteration level is the average value of all the estimates ob-
tained based on the individual surfaces. This aspect of the al-
gorithm represents the fundamental difference between our ap-
proach and that in projection onto convex sets where the esti-
mate is projected from one place Pi onto another. The impor-
tance of averaging is crucial in a number of situations and these
can be classed as follows: When the planes do not intersect in
which case POCS will result in a point on one plane, while our
method will result in a sensor, that is the average between the
two guesses. When the intersection of the planes forms a region,
a solution space, in which case POCS will result in a point on one
of the planes or the intersection point between two planes, while
our method will result in a point inside the solution space. Fi-
nally, and most importantly, when there are outliers in the data,
i.e. some of the planes have been shifted by a large distance
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from their original position; then the worst case scenario for
POCS would be to terminate when the estimate is on an outliers
plane. Unfortunately, though averaging would reduce the effect,
it would not resolve this problem. Thus we propose to make use
of a robust averaging technique to identify and dampen the in-
fluence of the outliers. The approach followed in this paper, to
estimate a robust mean, is based on clustering the data xi at itera-
tion level k into r random clusters with each including s% of the
calibration points. The final average is taken as the median of all
the average values. Formally, we define a set Q such that:

Q[xk+1
i ] = {xi ∈ Rn∧Axk+1

i = bi} (12)

Further, we define the clusters as subsets S of Q where:

S[xk+1
h ]⊆ Q (13)

where h is a random element between i = 1 and i = m. As and
example we can think that the sum of h is one fifth of m.

The robust averaging is then calculated as the median of the
values of the mean of all the subsets S; and the more sets we have
the more robust the average is.

Results
To test the performance of the proposed algorithm robust

averaged projections onto convex sets RAPOCS and compare
it with standard methods we spectrally calibrated a MegaVi-
sion camera and the Nikon D70 digital SLR camera. For the
Nikon D70 the actual sensitivities were not available while for the
MegaVision the sensor curves were measured using a monochro-
mator.

In the first experiment, MegaVision, the spectral data was
that of the Macbeth Color Checker Chart measured under a day-
light simulator. Further, because the actual sensitivities were
available, it was possible to compare the sensor estimate with the
measured sensitivities in the spectral space. The similarity be-
tween the estimated sensors and the measured curves was based
on the Vora value Reference [8], which is the ratio between the
estimated sensor and its projection element in the space of the
measured curves.

In the second experiment, Nikon D70, we used the Esser
chart with 282 colored patches. The spectral data was measured
using a Minolta CS-1000 spectroradiometer under the daylight
simulator of the Macbeth Verda viewing booth. The camera re-
sponses were captured in the Nikon raw image format; and the
response data was checked for linearity and the dark noise was
subtracted.

For numerical data comparison we used the absolute error
between the estimated and measured responses. This is defined
as:

AE = |aix̃−bi| (14)

where x̃ is the estimated sensor. To allow meaningful comparison
in terms of the absolute error metric; the data in b and Ax̃, for all
channels, were normalized such that the maximum value was set
to 100. Thus a difference of one is equivalent to 1% error.

MegaVision
In this experiment, we used three estimation methods: The

truncated singular value decomposition TSVD, projection onto
convex sets POCS, and the proposed robust averaged projections
onto convex sets RAPOCS. To ensure robustness, we divided the
solution set Q into r = 100 subsets S where each subset con-
tained a random selection of surfaces corresponding to one third
s = 0.33 of the available 24 calibration patches. The estimated

sensor set is shown using dashed lines in Figure (2) where we
have superimposed the measured sensors in solid lines. We note
that although not perfect, the estimate is visually close to the
measured. Further, for all the methods, we calculated the channel

Figure 2. The sensors set estimated with the proposed method are shown

in dashed lines. The measured sensors set is shown as the solid lines.

The data was sampled at 10nm intervals between 400 and 700nm and the

sensors were normalized such that the maximum value of each is unity.

wise absolute error. These results are tabulated in Table (1), in
which we observe that the RAPOCS performs better than TSVD
and POCS on the red and green sensor and slightly worse than
TSVD on the blue sensor. We notice, however, that RAPOCS
performance is clearly superior to POCS. Further, by definition
the RAPOCS is derived to avoid outliers and dampen the effect
of noise in the data. This characteristics means that we should
expect the rgb fit of the calibration data to be less than that of
the TSVD which is derived to minimize the square difference
between the estimate and the measured data. To judge the good-
ness of the sensor estimates we made use of the Vora value. For
all the methods the values are reported in Table (2). Here we
clearly, notice that the proposed algorithm performs favorably to
the other methods.

Nikon D70
As previously stated, there were no measured sensors avail-

able in this experiment. Thus we are reliant on the level of rgb
data fit in our judgement of the recovery goodness. This data is
reported in Table (3). The recovered sensors are plotted in Figure
(3). From Table (3), we notice that the performance of RAPOCS
is equivalent to that of the TSVD, however, when we compare
the recovered sensor from Figure (3) we notice that the sensors
estimated by TSVD include negative values as well as a degree
of ringing where the sensitivity of the sensor is not high, i.e. the
red part of the blue sensor. Thus we can conclude that the new
method results in a data fit comparable to TSVD while stratify-
ing positivity, avoiding the ringing effects and not constraining
the estimated sensors to lie in a reduced dimensional space.

Noise robustness
Finally, we conducted an experiment based on synthetic

data where the rgb responses were calculated based on the
MegaVision sensors and the spectral data of the Esser calibration
chart. The responses were then normalized such that the maxi-
mum value at each channel was set to 100 and random noise with
bi-modal distribution was added. The noise level was increased
from 1-10% from the maximum value. For each noise level we
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Table 1: Mega Vision Camera error estimation.

method TSVD
Abs Error red green blue
mean 0.580 0.574 0.464
median 0.439 0.499 0.424
max 1.995 1.936 1.347
method POCS
Abs Error red green blue
mean 1.576 2.431 2.244
median 1.296 1.930 1.737
max 4.992 5.834 5.572
method RAPOCS
Abs Error red green blue
mean 0.530 0.479 0.671
median 0.510 0.324 0.505
max 1.271 2.018 3.867

The absolute error between the measured and estimated re-
sponses for the red, green and blue channels of the Mega
Vision Camera. The results are based on the truncated singu-
lar value decomposition TSVD, projection onto convex sets
POCS and the proposed algorithm RAPOCS. The calibration
data was that of the Macbeth Color Checker.

Table 2: Vora value for TSVD, POCS and RAPOCS.

method TSVD POCS RAPOCS
Vora Value 0.947 0.920 0.970

The Vora value which is a measure of similarity between the
actual sensors and the estimates. The results are based on
the methods TSVD, POCS and RAPOCS.

Figure 3. The sensors set estimated with the proposed RAPOCS method

are shown using lines. The TSVD sensors’ set is shown using dash dotted

lines and that estimated with POCS as a dotted line. The data was sampled

at 2nm intervals between 380 and 780nm and the sensors were normalized

such that the maximum value of each is unity.

recovered the sensor set using RAPOCS and the TSVD. The sen-
sors results of the recovery are shown in Figure (4) and Figure (5)
for the propose and TSVD respectively. Though it is not possi-
ble, from the figures, to clearly indicate which set corresponds
to which noise level; the figures serve to show that RAPOCS re-
sults in much more stable estimates even when the noise levels
are unreasonably high. To give a numerical comparison we cal-

Table 3: Nikon D70 error estimation.

method TSVD
Abs Error red green blue
mean 1.287 1.006 0.950
median 0.863 0.643 0.704
max 8.630 7.962 6.653
method POCS
Abs Error red green blue
mean 3.240 4.940 3.784
median 2.933 4.425 2.683
max 12.098 20.243 12.637
method RAPOCS
Abs Error red green blue
mean 1.288 0.996 1.039
median 0.786 0.618 0.765
max 8.252 7.856 6.770

The absolute error between the measured and estimated re-
sponses for the red, green and blue channels of the Nikon
D70 Camera. The results are based on the truncated singular
value decomposition TSVD, projection onto convex sets and
the proposed algorithm. The calibration data was that of the
Macbeth Color Checker.

culate the Vora value for each set at the different noise levels.
These values are reported in Table (4) where we notice that the
new methods outperforms TSVD especially when the noise level
is high.

Figure 4. The sensors set estimated with the proposed RAPOCS method.

Sensors are recovered from Esser chart data with 10 percentage levels of

simulated noise in steps of 1 percent. The solid curves are the measured

MegaVision sensors and the 10 recovered sensors in dotted curves.

Discussion and Conclusions
In this paper we have presented a new robust method of

spectral sensor recovery based on averaged projection onto con-
vex sets. The only constraint that was imposed on the solution
space is non-negativity, making the algorithm independent of a
priori knowledge of the sensor curves. When the data is noise-
free the new method, like previous methods, results in perfect
sensor solutions. Real data with unknown noise distribution is
the real challenge in sensor recovery. Thus, we have introduced
a robust algorithm that enables the user to heavily dampen the
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Figure 5. The sensors set estimated with the TSVD method. Sensors

are recovered from Esser chart data with 10 percentage levels of simulated

noise in steps of 1 percent. The solid curves are the measured MegaVision

sensors and the 10 recovered sensors in dotted curves.

Table 4: Vora values from simulated noise on Esser data.

% Noise RAPOCS TSVD
1 0.9941 0.9962
2 0.9931 0.9930
3 0.9903 0.9766
4 0.9844 0.9816
5 0.9764 0.9725
6 0.9755 0.9614
7 0.9651 0.9451
8 0.9591 0.9031
9 0.9626 0.8561
10 0.9423 0.8882

The Vora values for recovered red, green and blue sensors
from simulated Esser chart data responses with 1, 2 ... 10
percent noise added. The proposed method and the TSVD
is compared. The Vora value is increasing with decreasing
noise for both methods, while the proposed method system-
atically results in a higher value, indicating a better set of re-
covered sensors. Furthermore the proposed method appears
to yield relatively better estimates with increasing noise.

impact of noise and outliers on the solution. Controlling and
dampening the effect of noise is obtained through robust aver-
aging and employment of non-negativity. The experiments with
noise simulated data show that the method yields stable results
with high similarity, in terms of Vora value, between the mea-
sured sensor and the estimated, even when the noise level is un-
usually high. Further, the algorithm avoids the ringing effects
and does not constrain the estimated sensors to lie in a reduced
dimensional space. The method is computationally fast and sim-
ple to implement.
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