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Abstract 
Human vision extracts the visible spectral component C*, 

called fundamental, from n-dimensional spectrum C. The 
projection from C to C* is described by the matrix R in FCS 
(Fundamental Color Space). FCS is spanned by a matrix F with 
a selected triplet in R. The matrix R is decomposed into 
“achromatic” RA and “chromatic” RC by choosing matrix F.  
 This paper presents a Luma/Chroma opponent-color space 
that is created from spectral decomposition of fundamental 
based on matrix R theory. A new color space has orthogonal 
opponent-color axes with hue linearity because it’s created 
through a linear naive transformation of fundamental in FCS. 

The key points lie in that the “chromatic” projector RC is 
further decomposed into RR and RB opponent-color components 
and an orthogonal Luma/Chroma FCS is newly created by a set 
of (RA, RR, RB), each composed of n× n matrix. Now image 
colors are mapped onto Luma/Chroma FCS. First, a tri-
stimulus value XYZ from sRGB camera input is transformed 
back to the fundamental C* by pseudo-inverse projection. Next, 
C* is decomposed into the spectral triplet (CA*, CR*, CB*) 
through the (RA, RR, RB). Finally, the achromatic fundamental 
CA*(λ), n-dimensional vector, is converted to the luminance 
value LA by integral over λ. As well, the chromatic 
fundamentals, C R*(λ) and C B*(λ) are converted to the 
chrominance values CR and CB. The paper shows how the image 
colors are mapped onto (LA, CR, CB) Luma/Chroma space and 
introduces its application to the image segmentation in 
comparison with conventional CIELAB and IPT color spaces.  

Orthonormal Fundamental Color Space 
This paper discusses a Luma/Chroma opponent-color space 

created from a spectral decomposition of fundamental based on 
matrix R theory. A new color space has orthogonal opponent-
color axes with hue linearity because it’s created through a naive 
linear transformation of fundamental in FCS. 

A color matching function (CMF) transforms n-dimensional 
spectral input C into tri-stimulus vector T =XYZ. While, 
according to “matrix R” theory by Cohen [1], C is decomposed 
into the fundamental C* and metameric black B in spectral 
space as 
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I denotes unit matrix and R is the projector onto HVSS (Human 
Visual Sub-Space) derived from CMF A as 

tt AAAAR -1)(=          (3) 
A is the n × 3 matrix of 1931CIE )()()( λz,λy,λx CMF. 

The fundamental C* is the intrinsic color stimulus that 
causes a unique XYZ sensation to human vision. The metameric 
black B is the residue insensitive to human vision and spans n-3 

dimensional null space. C* carries the essential spectrum to 
human vision and the tri-stimulus value of B is zero as follows. 
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The projector R is the n × n symmetric matrix whose i-th 
column vector Ei is composed of the fundamental corresponding 
to each single spectrum ei at wavelength λi. 
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Since the rank of R is 3, it has only 3 independent vectors and 
the remaining n-3 are redundant. We can recreate R by choosing 
arbitrary triplet from the column (row) vectors. The selected 
triplet is called “matrix E” and i=r, g, b show the spectral 
primaries at wavelength λr, λg, λb as follows. 
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Indeed, Fig.1 shows the reconstructed matrix R from the 
middle three entries [E1, E2, E3] at λ=540,550, and 560 nm. 
The FCS is a color space spanned by a triplet of basis vectors 
called “matrix F”, which is orthonormalized version of matrix 
E using Gram Schmidt method as 
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The symbol vu• denotes the inner product of u and v. 
When the n × 3 matrix F is orthonormal,  

RFF =t           (11) 

The selection of matrix E is very important to construct 
orthonormal FCS as suggested by Brill, Finlayson, et al [2].  
For example, Burns, Cohen, and Kuznetsov [3] created an 
ortho-normal FCS called “R-L-V” choosing the matrix E with 
quasi-orthogonal axes of Red, Luminosity, and Violet. The 
historical orthogonal CMF by MacAdam1 is also used as a 
matrix E and classical Guth’s opponent CMF was recently 
orthonornalized by Worthey et al [4]. Kotera [5] reported that 
these CMFs span orthonormal FCSs close to R-L-V but slightly 
different. 

Since the entry of matrix E may be a linear combination of 
arbitrary column vectors {Ei }; i=1~n, for instance, the second 
vector E2 may be given by the weighted sum of {Ei } by 
illuminant D65 that means the fundamental of D65 itself. 
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Figure.1 Matrix R and its reconstruction from matrix E 

Spectral Decomposition of Fundamentals 

 Achromatic/Chromatic Fundamentals 
Setting the basis F2 to the achromatic fundamental and (F1, 

F3) to arbitrary orthogonal chromatic fundamentals in matrix F, 
the matrix R is decomposed [6] as  
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RA and RC are the orthogonal projectors to decompose the basic 
fundamental metamer C* into the achromatic and the chromatic 
fundamentals CA* and CC*. 
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When the chromatic projector RC is orthogonal to the 
achromatic projector RA, the inner product between them should 
be zero as  

0 =• CA RR          (15)  

Indeed, the matrix F in “R-L-V” FCS is composed of 
orthonormal basis functions with achromatic luminousity axis 
and satisfies the condition of Eq. (15). As well, FCSs derived 
from CMF by MacAdam or Guth also satisfy the same 
condition. 

Orthonormal Opponent FCS 
As well known, Luminance/Chrominance color models with 

opponent-color axes assigned to “Red-Green (R-G)” and 
“Yellow-Blue (Y-B)” have been widely used for color imaging, 
analysis, and picture coding. YIQ used in NTSC Television is a 
opponent-color system by a simple linear transformation from 
XYZ. CIELAB is a most popular uniform color space mapped on 
the R-G and Y-B rectangular opponent-color coordinates. Hence, 
a foundation of FCS with orthogonal and opponent-color 
structure is a lot of fun in practical use. 

The chromatic projector RC is further decomposed into two 
opponent-color components RR and RB by choosing an 
appropriate pair of (F1, F3). Thus, the chromatic fundamental 

CC*is decomposed into opponent-color fundamentals CR* and 
CB* corresponding to R-G and Y-B hue axes as follows. 
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To be perfectly opponent for CR* and CB*, it is desirable that 
the projectors RR and RB satisfy the following zero-sum 
conditions. 
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Although the matrix F in “R-L-V” FCS surely satisfies the 
orthonormal condition in Eq. (10) and the orthogonality 
between achromatic and chromatic components in Eq. (15), the 
zero-sum condition in Eq. (18) didn’t hold good as well as 
MacAdam’s or Guth’s FCSs. 

In the “R-L-V” FCS, the fundamental of λg =563 nm single 
spectrum is selected as the vector E2 to reflect the Luminousity 
L axis, but this doesn’t exactly mean the luminance which is 
defined as a linear mixture of R, G, B components. 

The zero sum condition can be obtained by replacing the 
vector E2 with the fundamental of white illuminant such as EE 
(Equal-Energy) or D65. However EE is not popular as an 
illuminant in practice, while D65 is recommended as the most 
widely used illuminant. Hence “R-D65-V” FCS was created by 
introducing the fundamental of D65 into vector E2 in Eq. (13) 
and applying the GramSchmidt orthonormalization for matrix E 
to get matrix F. 

Fig.2 summarizes how the matrix R is decomposed into the 
achromatic RA and chromatic RC components and further into 
the opponent-color projectors RR and RB. The left half is the 
Cohen’s “R-L-V” and the right half is the proposed “R-D65-V” 
FCS. Although RA and RC are orthogonal each other in both 
models,  
the zero-sum conditions in the projectors RR and RB don’t hold 
good for “R-L-V” FCS, while they are almost maintained in the 
proposed “R-D65-V” FCS under the negligibly small errors. 

Orthogonal Luma/Chroma Color Space 
Now a new Luma/Chroma FCS is founded using a set of 

achromatic and chromatic fundamentals (CA*, CR*, CB*).  
Since these decomposed fundamentals are denoted as n × 1 
vectors or scalar functions of λ, they are converted to the 
luminance and chrominance values to be located at luminance 
/chrominance coordinates (LA, CR, CB) as follows. 
By taking the inner products with each basis vector in matrix F, 
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That is, the decomposed fundamentals (CA*, CR*, CB*) are 
simply related to 
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Figure.2 Matrix F and Luminance/Chrominance decomposition of matrix R (left: R-L-V, right: proposed R-D65-V model)

Here LA reflects the luminance component as the integration of 
basis vector F2 weighted by the fundamental C* in λj. As well 
CR and CB correspond to the opponent-color R-G and Y-B 
chromatic components. Since the opponent-color fundamentals 
CR* and CB* are the function of λj, the chromaticity of an input 
fundamental spectrum C* draws its specified locus in 2-D (CR*, 
CB*) plane. 

Fig.3 illustrates the spectral decomposition of fundamental 
C* for the IT8/7.2 skin color chip #125 and its spectral locus in 
2-D chrominance (CR*, CB*) plane and its chrominance (CR, CB) 
is pointed by the vector. 
 Now we can map the fundamental C* onto the new 3-D 
orthogonal luminance/chrominance color space pointed by the 
coordinates (LA, CR, CB) after spectral decomposition in FCS. 

However (LA, CR, CB) is not a uniform color space like as 
CIELAB, because it is basically derived from the linear 
transformations from  
original tri-stimulus value XYZ. Then in practical use, it’ll be 
better for (LA, CR, CB) values to be compressed in nonlinear 
manner. Following the IPT opponent-color model [8] with 
excellent hue linearity, the power function with exponent of γ 
was taken into account for the compression as follows. 
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Here we call the γ-compressed )
~

,
~

,
~

( BRA CCL as Luma/Chroma 
notated by popularly used words for the signals after γ- 
correction, that is, “Luma” for luminance and “Chroma” for 
chrominance. 
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Figure.3 Spectral decomposition of IT8 #125 chip and its chromatic locus 

Image Color Mapping Experiments 
 The characteristics of the proposed FCS have been 
examined by the color mapping experiments on some test color 
chips and natural color images. Again, it should be taken notice 
that the proposed model transforms an input color into 

)
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( BRA CCL space based on the spectral decomposition of 

fundamental, though it needs not any spectral input but just a 
normal tri-stimulus XYZ or tri-color RGB camera input. 

Transformation of XYZ to Fundamental 
The proposed Luma/Chroma color model needs not any 

spectral reflectance input C but needs the fundamental C* of 
each pixel to map the image colors. Since C*carries the correct 
tri-stimulus value T= XYZ as given by Eq. (4), we can get C* by 
the inverse projection from T to C* [7].  

Applying the generalized pseudo-inverse projector PINV,  

TPC INV * =                      (22) 
-1)(  AAAPINV

t=         (23) 

Now, the sRGB image data Xi=[R(j), G(j), B(j)]t (j=1~N pixels) 
are transformed firstly to XYZ tri-stimulus values, secondly to the 
fundamental C*(j) (j=1~N) by Eq.(22) ~ (23), and finally to the 
corresponding Luma/Chroma t
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through Eqs. (14) ~ (21). 

Fig.4 illustrates the pseudo-inverse projector PINV and the 
fundamental C* of IT8/7.2 color chip #125 reconstructed from 
its XYZ value taken under D65 illuminant. 

Hue Linearity of RGBCMY Color Tone  
 The defect in hue non-uniformity of CIELAB or 
CIECAM97 has been much improved by IPT color model [8]. 
As well, the proposed model is basically expected to hold the hue 
linearity, because the model is derived from a “naïve” linear 
transformation of fundamental based on matrix R theory, a root 
of human vision. 

Fig. 5 compares a hue linearity for the pure primary RGB 
and secondary CMY color tones. Six mono-color tones with 256 
gradation were generated by computer, where C=G+B (for R=0 
and G=B=0~255), M=R+B (for G=0 and R=B=0~255), and 
Y=R+G (for B=0 and R=G=0~255) are displayed as sRGB data.  
Against the non-linear distorted hue lines in CIELAB, the  
proposed Luma/Chroma FCS resulted in the straight hue 
linearity as well as IPT. It’s notable that the six RGBCMY hue 
lines are mapped in almost perfect opponent-color directions in 
the new model. Through all the experiments, γ=0.43 is used as 
same as IPT. 
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Figure.4 Pseudo-inverse transform from XYZ to fundamental 

Mapping of Uniform OSA Color Chips 
 A set of radial sampled chips in OSA uniform color scales 
by Moroney [9] was tested in comparison with CIELAB and IPT. 
 As shown in Fig.6, IPT looks to have the best uniformity, while 
the proposed FCS also gave the better uniformity than CIELAB. 

Mapping of sRGB Color Chips 
Fig.7 compares the mapping results in computer generated 

sRGB chips. Totally 9621 combinations of chip data are 
distributed to fill the sRGB display gamut. Different from Fig.6, 
the mapped colors by proposed model look to be widely and 
uniformly spreading than CIELAB and ITP.  

Application to Image Color Clustering 
 Since the proposed Luma/Chroma FCS has orthogonal 
opponent-color axes and well-separated hue linearity, it may be 
useful for color clustering that is a key technology to image 
segmentation. 
 Fig.8 shows a sample of image color mapping and 
segmentation in the new FCS. As shown in Fig.5, the gradations 
of pure primary and secondary colors are mapped on straight 
lines in the new FCS. The color maps of sRGB image “parrot” 
shown in (b) are classified by the most popular k-means 
clustering method [10] and segmented as shown in the outline 
contours in (a).  
Fig.8 (c) and (d) show another sample for Scid2 image “flower”. 
 In the discrimination of clustered colors, the proposed 
Luma/Chroma FCS resulted in the better performance than 
conventional CIELAB and roughly close to IPT.  

Conclusions 
 The paper proposed a new Luma/Chroma FCS with 
orthogonal opponent-color axes. Since the model is introduced 
from a naive transformation by spectral decomposition of 
fundamental based on matrix R theory, it has the excellent hue 
linearity and perfect opponent axes. Image colors mapped onto  
the proposed new coordinate system are expected to reflect that 
naïve achromatic/chromatic spectral separation characteristics of 
human color vision. Further research on the better FCS and 
applications of its unique features to better color imaging are to 
be continued. 
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Figure 5. Color map of  RGBCMY Color Tone (256 gradations) 

Figure 6  Color map of radial sampled uniform OSA chips

CIELAB Proposed R-D65-V FCSIPT

Figure 7. Color map of  sRGB 9621 chips
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(a) Segmented results for “parrot” by k-means clustering method (K=8)

(b) Clustered color distribution for “parrot” in 3-D color space

(c) Segmented results for “flower” by k-means clustering method (K=13)

(d) Clustered color distribution for “flower” in 3-D color space

CIELAB IPT Proposed R-D65-V FCS

CIELAB IPT Proposed R-D65-V FCS

CIELAB IPT Proposed R-D65-V FCS
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Figure 8   Image segmentation results by k-means clustering in proposed R-D65-V Luma/Chroma FCS in comparison with CIELAB and IPT 
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