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Abstract 
Choice of camera calibration target influences how well 

an algorithm can estimate the color of specific scene objects. 
This research investigates the value of customized targets for 
estimation of flesh color.  The use of a standard color 
calibration target is compared with a customized skin-based 
target.  A spectral database of measured skin reflectances was 
available for use in this study.  A skin target was simulated and 
compared to how well a standard MacBeth ColorChecker 
performed in calibrating a camera for accurate estimation of 
skin colors.  The ColorChecker had a low average of 2 
CIEDE2000 error units for the task.  A simulated flesh target 
improved estimation error by 26%.  For a second simulation a 
noise model derived from a commercial clinical photography 
system was imposed.  In this more realistic case, the skin-
customized target improved results by a far larger 60%. 

Skin Reproduction  
In the field of color reproduction, a very common subject 

is people.  Human flesh is often a significant component of 
scenes.  Reproducing skin faithfully is a key requirement of 
many reproduction systems.  If familiar with a person being 
photographed, an observer can be highly critical of the 
reproduction accuracy.  If not familiar with the subject, an 
observer will reject an image if skin color is deemed 
implausible.  Skin is a memory color to which humans are 
highly sensitive even without ever having seen the person who 
was photographed.  

In 1976 McCamy and co-workers published the 
specifications that became the basis for the widely used camera 
characterization target, now known as the standard 24-patch 
ColorChecker1.  The article described the target as follows: The 
4×6 array of patches … includes spectral simulations of light 
and dark human skin, foliage, blue sky and a blue flower 
(chicory). Additive and subtractive primaries and a six-step 
neutral scale are included for analytical studies and other 
colours fill a wide gamut.  

It is noted that the first patches mentioned in the 
description were the spectral simulations of light and dark skin 
because of their considered importance.  But, it is clear that the 
ColorChecker was appropriately designed for a wide gamut of 
colors, not just flesh colors.  A flower, blue sky, foliage, 
additive and subtractive primaries and a gray scale all are 
included to allow the target to stand in for a variety of 
important colors that would be commonly encountered in 
typical scenes.   

Previously, Rosen and Berns demonstrated the value of 
having a camera profile built from targets consisting of the 
same type of material as that being photographed2.  In that 
experiment it was shown that patches printed on ink-jet were 
better served by profiling targets printed on ink-jet than by the 

traditional ColorChecker target, even though the colorimetry of 
the ink-jet targets matched the ColorChecker very closely. 

There are certain reproduction tasks that are significantly 
limited or exclusively limited to flesh colors.  These would 
include certain medical and cosmetics applications.  In such 
cases, it is fair to imagine that a ColorChecker-like target with 
its wide gamut of colors may cause calibration trade-offs that 
do not necessary result in optimal flesh reproduction.  The 
ultimate target for a skin-only reproduction task should include 
a large set of patches with the same spectral reflectances as 
human flesh. 

Simulation with Low Noise 
An experimental simulation was designed to investigate 

how much advantage a skin-customized camera calibration 
target would give to the highly constrained task of only 
reproducing skin.  Such a target should include many patches 
with spectral reflectances similar to flesh, much like the light 
and dark skin patches on the standard ColorChecker.  A 
database of skin measurements and photographs, the Sun Skin 
Database3, was available for this project.  Samples in the 
database were collected through careful spectroradiometric 
measurement and photography under the same illumination 
conditions. 

The Sun Skin Database contains multiple skin 
measurements taken from 34 faces.  The population that was 
measured and photographed for the study came from a variety 
of ethnic backgrounds.  See Table I.  RGB photographs of the 
skin were made under the measurement conditions.  Also, a 
standard ColorChecker target was measured and photographed 
under the same conditions. 

Table I: Sun Skin Database 
Ethnicity Number of 

participants 
Asian 11 

White 8 

Black 7 

Indian 
(subcontinent) 

6 

Hispanic 2 

 
A comparison was made between how well skin 

colorimetry was estimated from a profile made from a 
simulated target consisting of skin samples from the Sun 
database and a profile from a standard ColorChecker 
photographed under the same conditions.  

The skin spectral measurement database contained spectral 
reflectances in the range of 400nm - 700nm for multiple spots 
on the face for each of the participants.  A well-characterized 
low-noise camera captured the corresponding RGB data, which 
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was subsequently linearized. The database also contained 
spectral reflectance and linear RGB data for irises and hair of 
the subjects as well as a standard ColorChecker. The iris and 
hair data were not used for this investigation. 

The spectral reflectance data were integrated with human 
color matching functions and the spectral power distribution of 
D50 illumination to calculate CIEXYZ and CIELAB under 
D50. To transform camera linear RGB to corresponding 
CIEXYZ, a camera profile was built in MATLAB. The RGB 
data were previously linearized so a simple 3 by 3 matrix 
carried out the conversion.  

Two profiles were made; one was based on the 
ColorChecker data and the other one based on a training set 
consisting of one half of the skin data from the database. The 
two profiles were then tested on the other, independent, half of 
the skin data. The prediction errors of each profile on each test 
data set are shown in the Table II in terms of average color 
difference CIEDE2000 between the profile predicted color 
values and the measured values.  

Table II: Performance of ColorChecker and Skin-customized 
Profiles From Sun Skin Database 

Photographed 
target 

Profile made 
from 
ColorChecker 

Profile made 
from  
Sun Skin 
Database 
training 
patches 
 

ColorChecker 1.8 4.3 

Sun Skin Database 
independent 
samples 

1.9 1.4 

All values in CIEDE2000 units averaged over the test patches 

 
It is not surprising that the profile made from the skin-only 

samples was poor at predicting the color of the ColorChecker 
(an average of 4.3 CIEDE2000 units).  Also not surprising is 
the fact that the profile made from skin samples is best at 
predicting the independent skin samples. 

The ColorChecker did relatively well at estimating the 
flesh colorimetry.  On average the ColorChecker profile was 
off by only 1.9 CIEDE2000. On the other hand, the skin color 
prediction average for the profile made from imaging the skin-
customized calibration target had a 26% improvement bringing 
the CIEDE2000 average error down to 1.4 units. 

Although the profiles made from the skin were not good 
predictors of the ColorChecker colorimetry, the performance of 
the profile made from the standard ColorChecker data was very 
close in absolute terms to the quality of the profile generated 
from the skin data for predicting the colorimetry of the 
independent skin test data. 

Figure 1 illustrates the histogram of color error for the 
skin samples through the profile produced from the skin-
customized target.  The majority of samples are less than 1 
CIEDE2000 and almost all are less than 3 units.   Figure 2 
illustrates the same samples when transformed through the 
ColorChecker target profile.  Although there is a slight shift 
toward higher color error, the shapes of the two histograms are 
quite similar. 
 

 
Figure 1: Histogram for Sun Skin Database independent samples 
through the profile produced from Sun Skin Database training patches. 

 
Figure 2: Histogram for Sun Skin Database independent samples 
through the profile produced from the ColorChecker. 

Simulation with Typical Noise 
The experimenters were interested in how this difference 

in color prediction changed as noise from a typical clinical 
photography system was introduced.  An imaging environment, 
Visia-CR, advertised as “high quality, reproducible facial 
imaging for clinical research”4 was selected.  This imaging 
module is designed for facial photography.  It has head support 
and built-in lighting. 

Over a period of three and a half months, ColorChecker 
SG targets and uniform gray targets were regularly imaged in 
the Visia-CR.  The gray targets allowed for flat-fielding of the 
images.  The camera-delivered RGB values were normalized to 
between 0 and 1. A linearization function was optimized in the 
form of: 

 

RG ′B = 1.1RGB2.6
 (1) 

 
A Gaussian noise function was derived from the linearized 

data.  It was highly stable throughout the data collection.  The 
noise was seen to have a mean of 0.1% and a variance of 
0.09%.  Noise sources included both lighting and camera 
response variations. 
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In MATLAB, the linear RGB values from the Sun Skin 
Database were modified by applying normally distributed 
random offsets that exhibited the mean and variance of the 
clinical setting.  With these augmented RGB values, the 
previous experiment was repeated.  Again, two profiles were 
produced, one based on the simulated noisy ColorChecker data 
and the other on half of the noisy skin data.  Table III shows 
the performance when passing the noisy ColorChecker data and 
the noisy independent skin data through the two profiles. 

Table III: Performance of ColorChecker and Skin-customized 
Profiles From Sun Skin Database with Noise-augmentation 

Photographed 
target 

Profile made 
from 
ColorChecker 
with noise 

Profile made 
from noisy 
Sun Skin 
Database 
training 
patches with 
noise 
 

ColorChecker with 
noise 

6.4 17.2 

Sun Skin Database 
independent 
samples with noise 

8.5 3.4 

All values in CIEDE2000 units averaged over the test patches 
 
In this case, the profile made from the ColorChecker was 

no longer relatively good at estimating the flesh colorimetry.  
On average the ColorChecker profile was now off by 8.5 
CIEDE2000 units. The skin color prediction average for the 
ColorChecker-produced profile is two and a half times worse 
than the 3.4 CIEDE2000 average error that the skin-customized 
calibration target produced. 

 

 
Figure 3: Histogram for noise-augmented Sun Skin Database 
independent samples through the profile produced from noise-
augmented Sun Skin Database training patches. 

 
Figure 4: Histogram for noise-augmented Sun Skin Database 
independent samples through the profile produced from the noise-
augmented ColorChecker. 

Figure 3 shows the histogram of CIEDE2000 for 
independent skin samples transformed through the skin-
customized profile.  The shift from Figure 1 to Figure 3 is quite 
significant.  This shows the impact of noise on the making of 
skin-customized profiles.  

What is far more dramatic, though, is the tremendous shift 
toward high error exemplified between Figure 3 and Figure 4.  
With noise in the simulation, the ColorChecker-produced 
profile is no longer able to predict skin-colors with reasonable 
accuracy.   

Typical noise has clearly differentiated among the 
standard and customized profiling approaches. 

Discussion 
In previous work, Rosen and Berns2 showed that color 

patch targets produce profiles that perform better when the 
targets and scene objects share similar spectral characteristics.  
The results from the current study are compatible with those 
earlier findings.  Here we find that a skin-customized target 
does a superior job at producing a profile that well predicts 
colorimetry of independent skin samples than a ColorChecker 
produced profile. 

It might be straightforward to predict that a profiling 
target made of spectral components similar to the objects being 
imaged should out-perform a standard target.  The question 
then becomes, how much better will it do?  For the first 
simulation with low noise reported above, it was surprising 
how little difference in absolute terms there was when 
switching between the ColorChecker target and the skin-
customized target.  An average improvement of half a 
CIEDE2000 might not be significant enough for more than the 
most demanding application. 

The second simulation reported here brings out the power 
of using the appropriate target.  By adding typical acquisition 
noise to the simulation, the difference between the profiling 
results derived from a standard target and a customized target 
become far clearer.  Applying to the skin capture database a 
noise model derived from analysis of a clinical research facial 
capture apparatus, the use of a profiling target with patches 
spectrally similar to the objects being imaged is shown to be 
very important. 

For the noisy case, predicting the colorimetry of skin 
using a profile produced by a ColorChecker has an average 
CIEDE2000 of 8.5.  There is a 60% improvement when 
building a profile from patches of skin reflectances.  The 
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average CIEDE2000 error falls to 3.4 units.  An application 
would not require extremely tight tolerances to enjoy the 
benefits of the customized target. 

Conclusions 
It has been shown that color reproduction errors increase 

as camera calibration targets become spectrally different from 
the materials that are to be imaged.  A hypothesis followed 
from this that for reproduction of skin colors, a target made up 
of skin reflectances should improve reproduction over the use 
of a standard target.  This proved to be true, although to only 
0.5 CIEDE2000 on average.  The standard target did as well as 
it did because its design consciously includes flesh even while 
it is designed to do well on a wide gamut of colors.  For 
ultimate flesh performance, though, it was shown that a skin-
customized target was better because the standard target was 
shown to do on average 36% worse.  

In a capture situation where typical noise is present, the 
advantages to profiling using a target made up of skin 
reflectances was far more pronounced.  The average deficit for 
using the ColorChecker for predicting skin was 250% of the 
CIEDE2000 found when using a profile made from skin-like 
patches. Unfortunately, the converse is also true, that the 
profile made from a customized target can be a very poor 
predictor of colors that are not spectrally similar to skin.  In the 
noisy simulation, the average CIEDE2000 for predicting the 
colors of the ColorChecker from a profile produced from skin 
colors was a whopping 17.2 units. 

In many different situations, skin-customized targets 
should improve the results for producing profiles for skin color 
reproduction.  When predicting non-skin colors is of very little 
value, the use of customized target should be considered, as the 
improvement for the colors of interest is significant. 
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