
Spectral Gamut Mapping Framework
based on Human Color Vision
Philipp Urban, Mitchell R. Rosen, Roy S. Berns;
Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science,
Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, New York 14623

Abstract
A new spectral gamut mapping framework is presented. It

adjusts the reproduction, choosing spectra within the printer's
gamut that satisfy colorimetric criteria across a hierarchical set
of illuminants. For the most important illuminant a traditional
gamut mapping is performed and for each additional considered
illuminant colors are mapped into device and pixel dependent
metamer mismatch gamuts. A computational separation method
is proposed in order to test the framework. Utilizing this sepa-
ration method on a seven channel printing system, experiments
allowed a deeper view on the structure of the device and pixel de-
pendent metamer mismatch gamuts and the possible directions
in color space in which a potential metameric gamut mapping
transformation could map out-of-metameric-gamut colors.

Introduction
In recent years spectral acquisition has become an active

research �eld. Today's technology is able to capture high reso-
lution multichannel images with very small spectral estimation
error. This technology is employed by museums for artwork
reproduction and for archiving applications. Wide-gamut multi-
colorant printers are used within traditional color management to
create accurate colorimetric reproductions that match originals
under a single illuminant. For some applications it can be
desireable for reproductions to match originals under multiple
illuminants. In such cases a spectral reproduction is needed. A
basic limitation of such a reproduction is the physical ability of
printing devices to reproduce re�ectances. The spectral printer
gamut is much smaller than the space of all natural re�ectances.
A lower bound of the dimensionality of natural re�ectances can
be determined through analysis of multiple spectral databases
[1]. Only by looking onto the dimensionality difference does it
become obvious that the majority of spectral re�ectances cannot
be reproduced without spectral error on a typical printer. It
becomes necessary to map the unreproducible spectra into the
spectral gamut of the printer. Such a mapping is not unique
and an optimal transformation strongly depends on the special
application. In recent years various metrics in spectral space
have been proposed [2, 3]. To show an advantage compared
to traditional color management, spectral reproduction should
be for one illuminant as visually correct as a colorimetric
reproduction and for other illuminants superior. An approach
has been proposed, combining a mapping in a perceptual color
space based on one illuminant and a spectral mapping within the
corresponding three dimensional device metameric black space
[4, 5, 6, 7].

In this paper we are presenting a spectral gamut mapping
framework that adjusts a reproduction so that it matches the
original under multiple illuminants considering properties of
human color vision.

The Spectral Gamut Mapping Framework
Terminology

In order to explain the spectral gamut mapping framework
we use the common terminology of discrete spectra, resulting
from a sampling of the continuous spectra at N equidistant
positions within the visible wavelength range from 380 nm
to 730 nm. Each re�ectance spectrum is a N-dimensional
vector r ∈ [0,1]N and the set of illuminants for which the
reproduction has to be adjusted is a set of N-dimensional vectors
representing the spectral power distributions of the illuminants
I1, . . . , In ∈ RN .

In the following text we use the observer's CIEXYZ tris-
timulus X(r, I) as a function of the re�ectance r = (r1, . . . ,rN)
and the illuminating illuminant I = (I1, . . . , IN):

X(r, I) =
1

∑N
i=1 ȳiIi

(
N
∑
i=1

x̄iIiri,
N
∑
i=1

ȳiIiri,
N
∑
i=1

z̄iIiri

)T

(1)

where x̄, ȳ, z̄ are the CIE color matching functions for the 2◦ or
10◦ observer, respectively. The color space transformation from
CIEXYZ into the nearly perceptually uniform CIELAB color
space is denoted by L : CIEXYZ 7→ CIELAB and the inverse
function by L−1 : CIELAB 7→ CIEXYZ.

The set of all re�ectances that result in the CIELAB value
x for an illuminant I is called metameric re�ectance set and will
be denoted by

M(x, I) = {r ∈ [0,1]N | L(X(r, I)) = x} (2)

The spectral printer gamut, which is the space of all printable
spectral re�ectances of the given device, is denoted by G ⊂
[0,1]N .

Methodology

Step 1: In a �rst step we calculate for each considered illuminant
a CIELAB image from the given multispectral image. If S is the
set of all re�ectances within the multispectral image we obtain
L(X(S, I1)), . . . ,L(X(S, In)).

Step 2: The main idea is to select an application-dependent
illuminant for that the spectral reproduction shall be as good
as a colorimetric reproduction (e.g. CIE-D50 if we want to
be consistent with the ICC [8]). We denote this illuminant the
base illuminant and it should be the �rst illuminant I1 in our
list of considered illuminants. For this illuminant a traditional
gamut mapping transformation ΓTrad [9] has to be performed
that transforms each pixel color of the corresponding CIELAB
image into an in-gamut CIELAB color

ΓTrad[G ] : CIELAB 7→ G (3)
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Figure 1. Left: Device gamut of the HP Designjet Z3100 Photo CMYKRGB printer under illuminant CIE-D50. Right: Device and pixel dependent metamer-
mismatch gamut of a color from the CIE-D50 gamut under illuminant CIE-A.

where G = L(X(G, I1)) is the printer's CIELAB gamut, which is
used as a parametric variable of the gamut mapping algorithm.
As a result of this transformation all pixels of the new CIELAB
image are within L(X(G, I1)), i.e.

ΓTrad

[
L(X(G, I1)

](
L(X(S, I1))

)
⊂ L(X(G, I1) (4)

It should be noticed that ΓTrad is not limited to pixel-wise gamut
mapping methods, also spatial gamut mapping methods can be
used, see [10] for a comparative overview.

Step 3: In this step the reproduction is adjusted for the
second illuminant. A traditional gamut mapping cannot be
used again because it cannot be ensured that for an image pixel
the gamut-mapped CIELAB color under the second illuminant
combined with the gamut-mapped CIELAB color for the
base illuminant can be reproduced by in-gamut spectra. As a
consequence we have to deal with pixel dependent gamuts rather
than a single global gamut such in the previous step.
Let r be a pixel re�ectance of the multispectral image and
x1(r) = ΓTrad[L(X(G, I1)](L(X(r, I1))) be the CIELAB color
under the base illuminant resulting from the traditional gamut
mapping. The CIELAB color corresponding to r for the second
illuminant can only be mapped into the metamer mismatch
gamut (see Figure 1) resulting from the intersection of the
device's spectral gamut G and the metameric re�ectance set
M(x1(r), I1) (see eq. (2)).

We denote such a mapping into the device dependent metamer
mismatch space by

ΓMeta[M ] : CIELAB 7→M (5)

where M is the device and pixel dependent metamer mismatch
gamut, which is used as a parametric variable

M = L(X(M(x1(r), I1)∩G, I2)) (6)

ΓMeta can utilize transformations that are related to human color
vision like minimizing color difference or preserving the hue an-
gle. Minimizing color differences is similar to minimizing the
metameric index and is already described by Tzeng and Berns
[11]. Some possible ΓMeta transformations can be:

1. ΓMeta[M ](x) = arg
(
miny∈M ∆E∗ab(x,y)

)

2. ΓMeta[M ](x) = arg
(

miny∈M ∆E∗94(2:2:1)(x,y)
)

3. ΓMeta[M ](x) = arg
(

miny∈M ∆E00(2:2:1)(x,y)
)

Transformations 2 and 3 utilize the kL, kC and kH coef�cients of
the CIE94 [12] and CIEDE2000 [13] color distance formulas.
By setting kL,kC > kH , distances in hue direction are weighted
larger [14][15]. In case of setting kL,kC = 2 and kH = 1
maintaining hue accuracy has twice the importance as lightness
and chroma.

Step 4,...,(n+1): For each additional illuminant Ii the pixel
CIELAB color L(X(r, Ii)) can only be mapped onto the device
and pixel dependent metameric mismatch gamut, which results
from the intersection of the spectral printer gamut G and the
intersection of all metameric spectra of the corresponding
gamut-mapped CIELAB colors x1(r), . . .xi−1(r) under the
previous considered illuminants, i.e.

M = L(X(
i−1⋂

j=1
M(x j(r), I j)∩G, Ii)). (7)

The same transformation ΓMeta can be used to map the pixel
CIELAB color onto the metamer mismatch gamut as in Step 3.

For each illuminant only transformations in a three dimen-
sional space have to be calculated. The results of these
transformations are used as parameters of transformations for
the next illuminant. In this way the reproduction is adjusted hi-
erarchically to a set of given illuminants. For a pixel re�ectance
r the spectral gamut mapping can be summarized as follows:

x1(r) = ΓTrad

[
L(X(G, I1)

](
L(X(r, I1))

)

x2(r) = ΓMeta

[
L(X(M(x1(r), I1)∩G, I2))

](
L(X(r, I2))

)

...

xn(r) = ΓMeta

[
L(X(

n−1⋂

j=1
M(x j(r), I j)∩G, In))

](
L(X(r, In))

)

If enough linearly independent illuminants are considered, so
that the matrix

Ω =




Ω1
...

Ωn


 , where Ωi =

1
ȳT Ii




x̄1Ii
1 · · · x̄N Ii

N
ȳ1Ii

1 · · · ȳN Ii
N

z̄1Ii
1 · · · z̄N Ii

N


 (8)
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has rank N, than an error-free reconstruction of in-spectral-gamut
re�ectances can be performed using the pseudoinverse

rin-gamut = (ΩT Ω)−1ΩT




L−1(x1(r))
...

L−1(xn(r))


 . (9)

If additionally ΓTrad and ΓMeta leave in-gamut colors unchanged
within each CIELAB color space for the considered illuminants
the proposed framework leaves in-gamut spectra unchanged as
well. See Figure 2 for a �owchart of the framework.

It should be noticed that the resulting in-gamut re�ectances
are not only depending on the considered illuminants but also
on their order. Another property of the proposed spectral
gamut mapping can be derived directly from eq. (1): If the
reproduction matches the original under a set of illuminants than
it matches the original under each mixture of these illuminants
[18]. This property can be very useful if the viewing conditions
are blending continuously between a �xed set of illuminants.
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Figure 2. Flowchart of the spectral gamut mapping framework. The multi-
spectral image is transformed into n CIELAB images for a set of application
dependent illuminants. The �rst CIELAB image for the base illuminant (il-
luminant 1) is transformed into the metameric gamut by a traditional gamut
mapping. The remaining CIELAB images for the other illuminants are trans-
formed pixel-wise onto the device and pixel dependent metamer mismatch
gamuts resulting from the previous gamut mapped images. The transforma-
tions are related to human color vision, e.g. by minimizing the CIEDE2000
distance. From the resulting in-gamut CIELAB images an in-spectral-gamut
multispectral image can be reconstructed, if suf�cient linearly independent
illuminants are used.

Computational Separation for Testing the
Gamut Mapping Framework

In general the separation process can be described as a con-
catenation of a spectral gamut mapping, and a printer model in-
version. For a printer whose spectral response is characterized by
a cellular Yule-Nielsen Spectral Neugebauer (CYNSN) model a
fast inversion method is described by Urban et al. [16]. The dif�-
culty in realizing the proposed gamut mapping framework is the
calculation of the pixel and device dependent metamer mismatch
gamuts

L(X(
i−1⋂

j=1
M(x j(r), I j)∩G, Ii)), i = 2, . . . ,n. (10)

The calculation of these gamuts for multiple illuminants and
high resolution images seems impossible in reasonable time.

Therefore, we chose a different strategy that is completely
computational and combines spectral gamut mapping as well as
model inversion for the whole image in a single step. We assume
that the spectral printer gamut can be reasonably described
by the connection of a set of spectral gamuts that are de�ned
by all CYNSN sub-models containing 4 colorants including
black. This assumption has been already used by Tzeng and
Berns [11] for modeling a 6 colorant printer. For a CMYKRGB
printer 20 sub-models have to be considered. Restricting the
maximum number of overprints to 4 has an additional advantage
since more overprints tend to behave unstable in terms of
color accuracy. The separation method uses the color just
noticeable distance (JND) of the human visual system (HVS)
as well as the high quantization of typical printing devices
[17, 18]. Using the traditional gamut mapping ΓTrad within a
hue linearized [19] CIELAB color space for the base illuminant
the CIELAB image is transformed into the metameric printer
gamut. A 3D histogram is created for this image and for each
sub-model the colorant space is sampled in 1% steps resulting in
approximately 100 million different colorant combinations. For
the 20 sub-models a total of 2 billion colors were transformed
by the forward model for the base illuminant and tested using
the 3D histogram for matching pixel CIELAB values of the
already gamut-mapped image. For each colorant combination
that matches a CIELAB pixel value for the base illuminant,
the corresponding CIELAB value for the second illuminant is
calculated using the forward printer model and compared with
the corresponding pixel CIELAB value for the second illuminant
using the function on which the metameric gamut mapping
transformation ΓMeta is based (e.g. CIEDE2000 or CIE94 with
special weight on the hue-difference). This is also done for
all other illuminants and the colorant combination was chosen
for the separation, which minimizes a weighted sum of these
function values. The weights can be chosen according to the
importance of the illuminant within the considered illuminant
set. A �owchart of the computational separation method is
shown in Figure 3.

The whole separation process needs approximately 5 min.
for a 22-megapixel image (painting in the style of Vincent van
Gogh's Church at Auvers [22]) on an Intel Q6600 quad-core
processor using a performance optimized C++ implementation.
It has to be noticed that the computational time depends on
the image content and the distribution of the 3D histogram as
well as on the number of metameric pixel colors for the base
illuminant. Even by using a 24-megapixel image that consists of
completely random colors spanning the whole color space for
the base illuminant the computational time did not exceed 10
min. on the described hardware.

A drawback of the proposed separation method is the dis-
regard of any spatial properties of the separation. Neighboring
pixels with nearly equal spectra can result in complete different
separations. As a consequence banding artifacts in the print
can occur especially for noise-free source images. For noisy
images captured by a multispectral camera such artifacts are
not observed. Nevertheless, in future work spatially smoothing
constraints within the printer's control value space need to be
added to the separation method.
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Figure 4. Examples of images separated for printing with high color inconstancy. After printing, visual inspections con�rmed that color changes of the
original across illuminants were mimicked by the reproduction.
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Figure 3. Flowchart of the computational separation technique that is used
to test the spectral gamut mapping framework.

Experimental Setup
An HP Z3100 Photo printer was used and controlled by a

Onyx Production House RIP (Version 7). The metameric gamut
under illuminant CIE-D50 of the printer can be seen in Figure 1.
Only the CMYKRGB ink subset of the 12 available inks were
used, since the other inks, mainly different black types and a
gloss enhancer, do not contribute signi�cantly to the spectral
variability. The medium used was Felix Schoeller (H74261)
270g/m2 paper that does not include optical brightener. Each
of the sub-models has 44 = 256 cells with optimized positions of
the cell primaries, according to the method of Chen et al. [20].
To characterize the printer a total of 7725 patches were printed
and measured.

Results
To test our framework we used a hue and lightness

preserving chroma clipping as the traditional gamut mapping
method ΓTrad. For the metameric gamut mapping ΓMeta a simple
minimizing ∆E∗00 was employed. We printed various images,
e.g., the highly color inconstant METACOW [21]. Additionally,

we reproduced paintings that include pigments with challenging
spectral re�ectances such as cobalt blue and ultramarine blue
(see Figure 4). The color changes of the originals across the
considered illuminants (CIE-D65 and CIE-A) were mimicked by
the reproductions. A detailed analysis how the printing system
with the proposed spectral separation framework is embedded
into an end-to-end spectral reproduction system is made in a
further CGIV 2008 paper [22]. In this paper quantitative results
are given in terms of CIEDE2000 color differences for all
considered illuminants.

In the present paper we were more interested in the struc-
ture of the device and pixel dependent metamer mismatch
gamuts and the possible directions in color space in which a
potential metameric gamut mapping transformation ΓMeta could
map out-of-metameric-gamut colors.

For this reason we calculated a separation of the METACOW
image for the described printing system with base illuminant
CIE-D65 and second illuminant CIE-A. The METACOW image
was constructed in a way that the left side of each cow has
spectral re�ectance properties measured from a GretagMacbeth
ColorChecker and the right side of each cow is a metameric
match under CIE-D65 that maximizes color differences under
illuminant CIE-A. All CIELAB colors of the image were within
the CIELAB device gamut for illuminant CIE-D65 (except
for the highlights and the black areas, which have lightness
values greater than paper white or smaller than the black ink,
respectively). Therefore, our traditional gamut mapping method
ΓTrad basically did not change any chromatic colors. We picked
two pixels from each cow, which lie on opposite sides and are
metameric under illuminant CIE-D65. The corresponding device
and pixel dependent metamer mismatch gamuts were plotted in
Figure 5 for illuminant CIE-A together with the corresponding
pixel CIELAB colors for both pixels. It can be seen that most
of the CIELAB colors under illuminant CIE-A from points
located at the left side of each cow can be printed by our system
since these colors are located mostly within the device and pixel
dependent metamer mismatch gamuts. Points located on the
right side of the cows are mostly far outside of the device and
pixel dependent metamer mismatch gamuts.

The position of these points relative to the metamer mis-
match gamuts does not allow a hue preserving mapping. This
can be seen especially for cow 2, 3 and 5. In contrast to
traditional gamut mapping methods that mostly try to preserve
hue this cannot be guaranteed for a mapping onto device and
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pixel dependent metamer mismatch gamuts.

A further interesting observation is that some device and
pixel dependent metamer mismatch gamuts have larger chroma
values than the corresponding pixel colors (see e.g. cow 16).
A mapping onto such metamer mismatch gamuts would result
in a chroma gain, which is also unusual for traditional gamut
mapping methods.

In future work we want to conduct psychophysical experi-
ments in order to test different metameric gamut mapping
transformations ΓMeta.

Conclusion
A spectral gamut mapping framework was proposed that hi-

erarchically adjusts the reproduction for a set of considered illu-
minants. This adjustment consists of a traditional gamut mapping
for a base illuminant and mappings onto device and pixel de-
pendent metamer mismatch gamuts for the other illuminants. In
case of considering enough linearly independent illuminants the
resulting set of tristimuli can be used to reconstruct in-spectral-
gamut re�ectances. Experimental results show that a hue pre-
serving mapping onto device and pixel dependent metamer mis-
match gamuts cannot be guaranteed and as a consequence hue
shifts of the print compared to the original cannot be avoided if
they are compared under a different illuminant than the base il-
luminant.

Acknowledgements
The authors thank HP for providing the printer and supplies,

Onyx for providing the RIP and the Deutsche Forschungsge-
meinschaft (German Research Foundation) for the sponsorship
of this project.

References
[1] J. Y. Hardeberg. On the spectral dimensionality of object colours.

In CGIV, pages 480�485, Poitiers, France, 2002. IS&T.
[2] F. H. Imai, M. R. Rosen, and R. S. Berns. Comparative study

of metrics for spectral match quality. In CGIV, pages 492�496,
Poitiers, France, 2002. IS&T.

[3] J. A. S. Viggiano. Metrics for evaluating spectral matches: A quan-
titative comparison. In CGIV, pages 286�291, Aachen, Germany,
2004. IS&T.

[4] Th. Keusen. Multispectral color system with an encoding format
compatible with the conventional tristimulus model. Journal of
Imaging Science and Technology, 40:510�515, 1996.

[5] M.R. Rosen and M.W. Derhak. Spectral Gamuts and Spectral
Gamut Mapping. In Spectral Imaging: Eighth International Sym-
posium on Multispectral Color Science, San Jose, CA, 2006. SPIE.

[6] M.W. Derhak and M.R. Rosen. Spectral Colorimetry using
LabPQR - An Interim Connection Space. Journal of Imaging Sci-
ence and Technology, 50:53�63, 2006.

[7] S. Tsutsumi, M.R. Rosen, and R.S. Berns. Spectral Reproduction
Using LabPQR: Inverting the Fractional-Area-Coverage-to-Spectra
Relationship. In ICIS, pages 107�110, Rochester, NY, 2006. IS&T.

[8] ICC. File Format for Color Pro�les. http://www.color.org, 4.0.0
edition, 2002.

[9] J. Morovic and M. R. Luo. The fundamentals of gamut mapping:
A survey. Journal of Imaging Science and Technology, 45(3):283�
290, 2001.

[10] N. Bonnier, F. Schmitt, and H. Brettel. Evaluation of spatial gamut
mapping algorithms. In IS&T/SID, 14th Color Imaging Confer-
ence, pages 56�61, Scottsdale Ariz., 2006.

[11] D.-Y. Tzeng and R. S. Berns. Spectral-Based Six-Color Separation
Minimizing Metamerism. In IS&T/SID, pages 342�347, Scottsdale
Ariz., 2000.

[12] CIE Publication No. 116. Industrial Colour-Difference Evaluation.
Vienna, 1995. CIE Central Bureau.

[13] CIE Publication No. 142. Improvement to Industrial Colour Differ-
ence Evaluation. Vienna, 2001. CIE Central Bureau.

[14] R.S. Berns and F.W. Billmeyer. Proposed indices of metamerism
with constant chromatic adaptation. Color Research and Applica-
tion, 8:186�189, 1983.

[15] Y. Chen, R. S. Berns, L. A. Taplin, and F. H. Imai. A Multi-
Ink Color-Separation Algorithm Maximizing Color Constancy. In
IS&T/SID, pages 277�281, Scottsdale Ariz., 2003.

[16] P. Urban, M. R. Rosen, and R. S. Berns. Fast Spectral-Based Sep-
aration of Multispectral Images. In IS&T/SID, 15th Color Imaging
Conference, pages 178�183, Albuquerque, New Mexico, 2007.

[17] G. Gonzalez, T. Hecht, A. Ritzer, A. Paul, J.-F. Le Nest, and
M. Has. Color management: How accurate need it be? Recent
Progress in Color Management and Communications, pages 24�
29, 1998.

[18] P. Urban. Metamere und multispektrale Methoden zur Repro-
duktion farbiger Vorlagen. PhD thesis, Technische Universität
Hamburg-Harburg, Germany, 2005. BoD, ISBN 3833426659.

[19] P. Hung and R. S. Berns. Determination of Constant Hue Loci
for a CRT Gamut and Their Predictions Using Color Appearance
Spaces. Color Research ans Application, 20(5):285�295, 1995.

[20] Y. Chen, R. S. Berns, and L. A. Taplin. Six color printer charac-
terization using an optimized cellular Yule-Nielsen spectral Neuge-
bauer model. Journal of Imaging Science and Technology, 48:519�
528, 2004.

[21] M. D. Fairchild and G. M. Johnson. METACOW: A Public-
Domain, High-Resolution, Fully-Digital, Noise-Free, Metameric,
Extended-Dynamic-Range, Spectra Test Target for Imaging Sys-
tem Analysis and Simulation. In IS&T/SID, 12th Color Imaging
Conference, pages 239�245, Scottsdale Ariz., 2004.

[22] R. S. Berns, L. Taplin, P. Urban, and Y. Zhao. Spectral Color Re-
production of Paintings. In CGIV, Barcelona, Spain, 2008.

Author Biography
Philipp Urban received his M.S. degree in Mathematics from the

University of Hamburg in 1999 and his Dr. degree in the �eld of color
science from the Hamburg University of Technology in 2005. From 1999
until 2006 he was part of the research group �Vision Systems� at the
Hamburg University of Technology and worked for Ratio Entwicklun-
gen GmbH (ICC-member) where he developed color managing systems.
Since 2006 he is a visiting scientist at the Munsell Color Science Labo-
ratory at the Rochester Institute of Technology. His research interests are
color science and multispectral imaging.

552 ©2008 Society for Imaging Science and Technology



1° 1* 2° 2* 3° 3* 4° 4* 5° 5* 6° 6*

7° 7* 8° 8* 9° 9* 10° 10* 11° 11* 12° 12*

13° 13* 14° 14* 15° 15* 16° 16* 17° 17* 18° 18*

19° 19* 20° 20* 21° 21* 22° 22* 23° 23* 24° 24*

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

0 100-100

0

100

-100 a*

b*

Figure 5. METACOW: Device and pixel dependent metamer mismatch gamuts under illuminant CIE-A, calculated for pixel pairs that are metameric under
illuminant CIE-D65. Each pixel pair belongs to a cow and contains one pixel on the left side of the cow and one pixel on the right side of the cow. The CIELAB
colors of each cow pixel pair under illuminant CIE-A are marked by �◦� for the left pixel and by �∗� for the right pixel. The contour line in each diagram marks
the CIELAB gamut of the printer under illuminant CIE-A.
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