
Broad Band Filter Selection by Approximating Principal Com-
ponents of Reflectance Spectra
Stephan Helling; Color and Image Processing Research Group, RWTH Aachen University; Aachen, Germany

Abstract
In this paper, a multispectral camera equipped with a num-

ber of broad band filters arranged in a filter wheel is in focus.
The different spectral transmittances of the filters allow for the
capture of a number of different image separations from which
the spectral color stimulus of each image pixel is estimated. A
large number of thin film and low cost filters is available on the
market. Here, a method selecting a limited number of filters
allowing for effective spectral reconstruction is proposed. The
strategy is based on the concept of selecting the filters in such a
way that a linear combination of the resulting camera sensitiv-
ities approximates the principal components of a representative
spectral reflectance set as well as possible. The filter selection
consists of an iterative method that eliminates filters from the ba-
sic set of available filters until the desired number of filters is
left. The spectral estimation is based on estimating the weights
of the basis vectors from the sensor response on one hand and
using Wiener inverse on the other hand. Simulated spectral es-
timation results based on a multispectral camera equipped with
the selected filters are given as well.

Introduction
The spectral separation in a multispectral camera can be ob-

tained using optical broad band or narrow band filters combined
with a greyscale sensor. Usually, narrow band filters are quite ex-
pensive and if mounted between lens and sensor tend to degrade
the image quality due to a certain thickness and other reasons
[1, 2]. On the other hand, a large number of inexpensive broad
band filters are available on the market. This paper deals with the
selection of a set of appropriate broad band filters from a com-
prehensive set of available filters.

Some research has been carried out on this subject in the
past. Ng and Allebach presented a subspace matching filter de-
sign method [3], Berns et. al. studied a combination of a con-
ventional RGB-camera and absorption filters [4], Imai et. al.
compared narrow band with wide band filtering for spectral re-
flectance reconstruction [5], Baribeau examined the selection of
optimal laser wavelengths for estimation of object reflectances
[6], and Hardeberg compared a number of filter selection meth-
ods [7]. Schettini et. al. proposed a filter selection method for
narrow band filters and a second method based on eigenvectors
of sensor responses [8]. Maı̂tre et. al. proposed a method based
on maximizing the projections of filter transmittance functions
onto eigenvectors of a representative spectral dataset [9].

The approach shown in this paper is based on the idea to
select a subset of filters in such a way that a linear combination
of the resulting sensor sensitivities approximates a given set of
basis vectors. The filter selection is carried out as an iterative
elimination of filters from a given set of filters until the desired
number of filters is left. Filters are eliminated if they exhibit a
low contribution to the linear combination. The basis vectors are
derived in advance by performing a Principal Component Analy-
sis on a representative spectral data set. If an approximate linear

transform between the resulting channel sensitivities and basis
vectors can be formulated, the same transform will link sensor
responses to weights of the basis vectors. Hence, these weights
can be estimated from the sensor response and used for spectral
reconstruction.

Basic Concept
Applying a Principal Component Analysis (PCA) onto a

spectral reflectance data set R consisting of a large set of re-
flectance functions r j yields a system B of orthonormal basis
vectors bi (row vectors):

⎛

⎜
⎝

b1
...

bB

⎞

⎟
⎠

︸ ︷︷ ︸
B

= PCA(R) , (1)

where B is both the number of basis vectors and the number of
rows in the matrix B. The projection of any given spectral col-
umn vector r j onto B yields the column weight vector w j

w j = B · r j (2)

that describes to the weights of the basis vectors bi in r j. Due to
the orthonormality of B there is an inverse operation B−1 = BT

that reconstructs exactly the original spectral vector r j from the
weight vector w j:

r j = BT ·w j (3)

where XT denotes the transposed matrix of X. An important
characteristic of B is that most of the information is concentrated
in the first few components bi with i � B, so that most of the
spectra r j can typically be described at very small error by a
linear combination of these first vectors while the components
of higher order are omitted. The weights w j,i in w j statistically
decrease with increasing i. The first six basis vectors calculated
from a PCA of the dataset by Vrhel et. al. [10] are shown in fig.
1.

If it would be possible to realize a set of sensor sensitivi-
ties A identical to the basis vectors B, the sensor signals a would
equal the projection of the recorded spectrum onto the orthonor-
mal basis system (eq. 2):

a = A · r = B · r = w, (4)

where A contains the spectral sensor sensitivities ai as row vec-
tors. In this case, an exact spectral reconstruction would be pos-
sible by applying eq. 3. However, the basis vectors derived by
PCA have negative parts, so they are not directly physically real-
izable as sensor sensitivities. What can be done, though, is trying
to find a set of sensor sensitivities that can be linearly combined
to approximate the basis vectors. The method proposed here is
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to select a subset of K filters from a big set of F available fil-
ters in such a way that these K filters form an approximate linear
combination given by the matrix KK of B basis vectors and vice
versa:

⎛

⎜
⎝

b1
...

bB

⎞

⎟
⎠

︸ ︷︷ ︸
B

≈

⎛

⎜
⎝

k1,1 . . . k1,K
...

...
kB,1 . . . kB,K

⎞

⎟
⎠

︸ ︷︷ ︸
KK

·

⎛

⎜
⎝

a1
...

aK

⎞

⎟
⎠

︸ ︷︷ ︸
AK

, (5)

where the row vectors bi and a j denote the basis vectors and
sensor sensitivities, respectively, and ki, j are the coefficients de-
scribing the linear combination.

The sensor response vector a obtained by the sensor AK
can be transformed by the same matrix KK into the estimated
weights of the basis vectors ŵ, and, thus, the projection of the
original spectrum r onto the orthonormal basis system B can be
estimated:

ŵ = KK ·a, (6)

Finally, the spectral vector r̂ can be estimated based on these
weights ŵ, i.e. w j = ŵ in eq. 3. Alternatively, the inversion of
AK can be conducted using known linear inversion methods such
as pseudoinverse or Wiener inverse, as well.

Selection Algorithm
Depending on the characteristics of the given filter set, it

might be important to carry out a reduction of the number of
available filters F in advance. There might be pairs of filter
transmittances fp and fq that are approximately colinear, so that
fp ≈ kfq, with k ∈ R. Furthermore, if a pair of filters fulfills∣
∣fp −kfq

∣
∣ ≤ ε the corresponding sensor responses will approxi-

mately be ap ≈ kaq, i.e. the signals are highly redundant. Thus,
one of the two filters can be eliminated from the data set in ad-
vance without loss of information. Apart from that, similar sen-
sor sensitivities degrade the system performance by introducing
strong noise problems.
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Figure 1. The first 6 basis vectors as calculated from the Vrhel dataset.

The elimination of redundant filter pairs is realized in two
steps. First, all filter transmittance functions are normalized, so
that |fi| = 1 for any filter i. Then, the F ×F dimensional matrix

C =

⎛

⎜
⎝

f1f1 . . . f1fF
...

. . .
...

fF f1 . . . fF fF

⎞

⎟
⎠ (7)

is calculated from the scalar products fif j of the respective filter
transmittances. The largest numbers in C indicate highly redun-
dant filter pairs, one of which is eliminated from the data set.
Orthogonal filter transmittances lead to zero covariance. Practi-
cal broad band filters do not show this. The following consider-
ations are based on the filter set that results from the reduction
described here.

The effective sensor sensitivity ai of channel i resulting
from the greyscale sensor sensitivity s, the respective filter trans-
mittance fi and other effects such as objective lens transmittance,
etc., o can be expressed as the component-wise multiplication of
these vectors:

ai = s · fi ·o. (8)

In order to find a subset of K filters of the set of F available fil-
ters, an iterative algorithm has been implemented. It successively
eliminates filters from the set of all F filters until the desired
number of filters is left. In the first step, a linear combination KF
of all F available sensor sensitivities AF is calculated. AF results
from applying all F filters to eq. 8. If the filter set is sufficiently
big compared to the set of basis vectors (i.e. F � B), this lin-
ear combination will approximate the given B basis vectors bi in
the matrix B at very little error. The matrix KF transforming AF

onto BB can be obtained by computing the pseudoinverse A+
F of

AF and multiplying it on both sides of eq. 5, which leads to:

KF ≈ B ·A+
F . (9)

Now, the filter with the smallest influence on the linear combina-
tion is selected from AF by searching for the column in KF that
contains the smallest absolute mean value. This filter is elimi-
nated from AF leading to a matrix AF−1 with the number of rows
decreased by one. Next, the pseudoinverse A+

F−1 of AF−1 is cal-
culated and used to compute the new linear combination KF−1 of
the remaining F −1 filters following eq. 9. Again, the filter with
the smallest, absolute, mean weight is deleted from AF−1 and
the new matrix KF−2 is computed. This step is repeated succes-
sively until the desired number of filters K has been achieved or,
a maximum error in terms of root mean square error between the
original basis vectors and the approximating linear combination
of the selected filters is exceeded.

Results
In the present study, the basic set of available filters consists

of three commercially available filter sets: the Rosco,1 Gam-
color,2 and Lee filters,3 resulting in a set of 827 filters. The filters
were measured using a spectral photometer4 providing spectral
transmittance data between 200 nm and 800 nm in 0.6 nm steps.
By cutting off UV and IR parts the spectra were reduced to com-
prehend only the visual part of the spectrum from 350 nm to 750
nm. They were reinterpolated in 1 nm steps.

1Rosco Laboratories, USA
2GAM Products, USA
3Lee Filters, Great Britain
4Dr. Gröbel UV-Elektronik, Germany
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Since the filter set created in this way contained a lot of very
similar filter pairs, a reduction of the number of filters performed
before the execution of the selection algorithm. The reduction
was done using the method described in the previous section.
Due to the high redundancy of the original filter set, approxi-
mately 600 filters could be eliminated without observable loss of
information. The method resulted in F = 227 remaining filter
transmittances. The set of basis vectors B was calculated using
PCA from the spectral remission dataset of Vrhel et. al.

The CCD sensor IXC085AL by Sony is a commonly used
image sensor and was chosen for the simulations performed here.
Its spectral sensitivity s (eq. 8) is given in fig. 2. The spectral
transmittance function of the objective lens and all other optical
components concatenated in o were assumed to be without in-
fluence, i.e. o = (1, . . . ,1)T inside the spectral range considered
here. In practice, all filters used in this study tend to transmit
close to 100% in the infrared part of the spectrum. Therefore,
an additional filter is necessary that blocks any light outside the
spectral range studied here, because the CCD is still sensitive to
such wavelengths. In this work, an ideal filter was assumed with
100% transmittance inside and 0% transmittance outside the in-
terval [350 nm, 750 nm].

Two main characteristics of eq. 5 were examined in this
work. Firstly, what is the number B of basis vectors, i.e. the
number of rows in the matrix B, that should be approximated?
Secondly, how many sensor channels K are necessary so that a
sufficiently exact linear combination of the given B basis vectors
is constituted? The achievable quality of the spectral estimation
served as a quality criterion. As indicated in the previous section,
the spectral estimation was done in three ways, the first of which
consisting of an estimation of the weights ŵ of the basis vectors
and superposing the weighted basis vectors obtained by a PCA
on the Vrhel dataset. In the second case, the estimated weights
ŵ were used to superpose the approximation of the PCA basis
vectors. In the third case, the sensor matrix AK was inverted
using Wiener inverse. In order to have a different test set than
the one used for PCA, the dataset by Pointer [11] served as a
representative collection of reflectance spectra. It was used to
calculate the mean color distance expressed in CIE ΔEab between
the original colors and the captured and estimated colors as a
function of B, K, and the spectral estimation method. The results
of the simulations are summarized in figs. 6 - 8. The bottom line
marked ”id” shows the simulation results for the theoretical case
that the sensor sensitivities exactly match the PCA basis vectors,
i.e. A = B as a function of the number of channels K.
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Figure 2. Sony ICX085AL sensor sensitivity.

In the first case (fig. 6), the spectra were reconstructed by
a weighted linear combination of the basis vectors generated by

PCA. The weighting was done based on the estimated weights ŵ
calculated from the sensor response (see eq. 6). The simulation
results show that two conditions must be fulfilled in order to as-
sure a mean color distance below 1: the number of basis vectors
B should not be below 8 and the number of channels K should
not be below 13.

In the second case (fig. 7), the spectra were again recon-
structed by a weighted linear combination of basis vectors. Un-
like the first case, these were not exactly the basis vectors gener-
ated by PCA, but their approximations given by the linear com-
bination KK ·AK of the sensor sensitivities. The results are in
general quite similar to those in the first case, though they tend
to be slightly worse.

In the third case (fig. 8), the spectra were estimated using
Wiener inversion of the sensor sensitivity matrix AK . In this case
no dependency can be observed between the quality of the esti-
mation results and the number of basis vectors B that are approx-
imated. There is merely a dependency on the number of channels
B showing that if 9 or more channels are used the estimation re-
sults will drop below ΔEab = 1.

A typical result of the approximation of the basis vectors
generated by PCA using the algorithm is given in fig. 3. In the
case depicted here, B = 6 basis vectors were approximated using
K = 16 channels. There is quite a good match between the basis
vectors and the linear combination of sensor sensitivities. Fig. 4
shows the sensor sensitivities selected by the algorithm.

wavelength [nm]

re
fl

ec
ta

n
ce

(a) 1st basis vector and approx.

wavelength [nm]

re
fl

ec
ta

n
ce

(b) 2nd basis vector and approx.

wavelength [nm]

re
fl

ec
ta

n
ce

(c) 3rd basis vector and approx.

wavelength [nm]

re
fl

ec
ta

n
ce

(d) 4th basis vector and approx.

wavelength [nm]

re
fl

ec
ta

n
ce

(e) 5th basis vector and approx.

wavelength [nm]

re
fl

ec
ta

n
ce

(f) 6th basis vector and approx.

Figure 3. The first 6 basis vectors as calculated from the Vrhel dataset

(solid lines) and their respective approximations (dotted lines) by performing

a linear combination of the spectral sensitivities selected by the algorithm

with the number of channels K = 16 and the number of approximated basis

vectors B = 6. In all cases a quite good match can be observed.

The basis vectors used in this research were computed from
the Vrhel dataset using equal energy white as light source. In or-
der to examine the estimation results if other light sources than E
are used, the capture and estimation processes were simulated for
illuminants A, B, C, D50, D65, as well. In all of these cases, the
spectral estimation was done using Wiener inverse. It was found
that the mean and maximum ΔEab values did not increase signif-
icantly as a function of different light sources. On the contrary,
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they even decreased in some cases. The results are summarized
in fig. 5.

Conclusion
In this paper, a filter selection method is proposed and ex-

amined. It is based on the concept of iteratively eliminating fil-
ters from a large set of available broad band filters. The iterative
deselection of filters results in a set of sensor sensitivities that
approximates a linear combination of basis vectors of a represen-
tative spectral remission data set. Based on the resulting sensor
response, spectral estimation can be carried out by estimating the
weights of the basis vectors or using Wiener inversion. In this pa-
per, minimum numbers of channels and basis vectors are given
that are required to gain a certain quality of spectral estimation as
a function of the spectral estimation method. The best estimation
results were obtained by using Wiener inverse.
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number of channels K

n
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as
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B

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 17.67 17.85 14.93 14.87 15.00 15.95 15.79 15.67 15.63 15.62 15.63 15.60 15.61 15.61 15.61 15.61 15.60 15.59

4 39.03 30.23 9.00 9.29 9.35 9.30 9.74 9.69 9.92 9.92 9.84 10.03 10.03 9.98 10.01 10.02 9.98 9.98

5 19.88 13.59 10.06 10.62 9.30 9.24 8.33 9.31 9.46 9.69 9.66 9.68 9.68 9.70 9.68 9.69 9.69 9.71

6 28.19 4.22 6.02 5.18 3.35 3.23 3.21 3.19 2.98 2.99 2.99 2.98 2.97 2.95 3.00 2.98 2.93 2.94

7 10.39 10.16 6.36 4.22 4.43 2.18 2.28 1.99 2.04 2.08 2.04 1.79 1.78 1.78 1.79 1.80 1.80 1.80

8 11.77 9.86 9.67 9.45 7.42 4.35 3.23 2.56 2.35 2.39 2.03 2.03 2.02 1.97 1.93 1.91 1.91 1.92

9 34.16 14.70 10.23 6.72 5.11 4.00 3.84 4.61 4.65 4.34 1.31 1.31 0.86 0.82 0.81 0.85 0.83 0.84

10 31.22 9.85 9.84 4.99 4.01 4.15 2.45 2.45 2.99 1.48 1.35 0.90 0.90 0.90 0.91 0.76 0.74 0.62

11 10.43 9.87 10.97 9.18 5.93 5.68 5.24 3.56 0.91 0.71 0.68 0.50 0.57 0.60 0.58 0.56 0.57 0.56

12 8.92 10.12 9.59 6.26 6.48 7.09 2.99 0.61 0.68 1.34 1.35 0.81 0.85 0.77 0.68 0.55 0.58 0.50

13 31.40 10.16 10.05 10.00 4.85 4.80 2.98 2.78 3.32 1.52 1.45 0.64 0.48 0.32 0.34 0.33 0.35 0.30

14 31.42 10.22 10.11 4.70 4.65 3.55 2.86 2.05 2.00 1.18 1.10 0.30 0.35 0.45 0.43 0.29 0.28 0.18

15 31.37 10.20 10.06 10.22 4.15 4.03 2.33 2.68 1.68 1.03 0.87 0.88 0.95 0.85 0.69 0.21 0.16 0.16

16 10.45 9.69 12.15 13.76 3.08 2.67 2.08 2.04 2.16 2.49 2.18 0.72 0.64 0.68 0.30 0.31 0.20 0.17

17 8.97 10.68 11.05 5.93 5.61 2.06 1.10 0.89 0.60 0.61 0.73 0.42 0.35 0.36 0.37 0.22 0.19 0.18

18 24.17 10.33 8.68 8.44 6.52 6.68 4.21 2.75 2.48 0.93 0.53 0.17 0.26 0.25 0.36 0.12 0.11 0.07

19 97.49 22.80 21.53 20.60 4.94 3.40 3.35 2.49 2.10 1.58 0.95 0.49 0.50 0.40 0.28 0.26 0.26 0.23

20 31.41 10.22 10.09 4.86 4.70 3.66 3.20 2.96 2.49 1.23 1.15 1.16 0.70 0.70 0.52 0.21 0.18 0.15

id 15.47 10.01 9.85 2.78 1.79 1.96 0.88 0.50 0.62 0.55 0.32 0.11 0.07 0.08 0.03 0.02 0.02 0.02

Figure 6. Mean color distances ΔEab between original and estimated colors of the dataset of Pointer with illuminant E as a function of the number of basis

vectors B and the number of channels K. Dark grey indicates an error > 5 ΔEab, light grey indicates an error > 1 ΔEab. The spectral estimation was done by

estimating the weights of the basis vectors from the channel response and summing up the weighted PCA basis vectors (case 1).

number of channels K
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 13.56 13.88 19.89 19.48 19.34 15.64 15.77 15.47 15.40 15.60 15.58 15.62 15.63 15.64 15.61 15.60 15.59 15.57

4 46.90 33.95 11.13 10.64 10.09 9.85 9.88 9.91 10.18 10.18 10.03 10.11 10.10 10.02 10.08 10.09 10.05 10.05

5 22.17 20.01 14.02 14.64 12.04 9.89 8.51 9.57 9.66 9.95 9.91 9.86 9.84 9.76 9.69 9.70 9.68 9.70

6 27.78 11.57 7.61 7.07 3.33 3.21 3.76 3.29 2.96 2.88 2.94 2.99 2.94 2.93 2.99 2.97 2.90 2.90

7 10.66 9.62 9.43 6.07 6.39 2.54 2.66 1.82 1.80 1.75 1.77 1.75 1.73 1.79 1.79 1.78 1.78 1.77

8 11.88 9.90 9.82 10.44 6.74 4.24 3.54 3.94 2.28 2.37 2.12 2.12 2.08 1.99 1.93 1.93 1.93 1.94

9 34.39 15.00 10.15 6.64 5.85 5.29 4.97 6.96 6.91 6.55 1.68 1.71 0.96 0.89 0.84 0.86 0.87 0.85

10 31.16 9.85 9.28 8.61 5.15 5.56 3.53 3.22 3.72 1.80 1.58 1.23 1.22 1.26 1.16 0.89 0.93 0.63

11 10.48 9.66 10.89 10.22 6.24 5.95 5.00 3.35 0.88 0.89 0.75 0.55 0.65 0.63 0.58 0.57 0.57 0.57

12 8.97 9.95 10.21 6.70 6.71 7.29 2.93 0.66 0.68 1.50 1.48 0.81 0.92 0.78 0.68 0.49 0.56 0.48

13 31.66 10.28 9.87 10.10 3.87 3.75 3.11 3.69 4.34 2.04 1.95 0.84 0.83 0.42 0.38 0.36 0.37 0.33

14 31.66 10.30 9.93 5.07 4.96 3.86 3.04 2.29 2.04 1.60 1.05 0.29 0.37 0.44 0.46 0.35 0.35 0.21

15 31.65 10.29 9.94 10.19 3.99 3.85 1.96 2.57 2.17 1.54 1.33 1.33 1.46 1.42 1.25 0.28 0.21 0.23

16 10.43 9.67 11.86 12.98 3.32 3.21 2.04 2.27 2.37 2.72 2.23 0.86 0.62 0.80 0.39 0.39 0.27 0.25

17 8.98 10.58 10.94 5.97 5.51 1.95 1.31 0.96 0.60 0.56 0.62 0.49 0.39 0.47 0.40 0.32 0.28 0.25

18 24.22 10.29 8.64 8.44 6.47 6.59 4.24 2.73 2.26 0.78 0.51 0.26 0.25 0.25 0.40 0.14 0.14 0.08

19 97.20 23.39 22.17 21.22 4.86 3.27 3.24 2.59 2.22 1.67 1.20 0.66 0.66 0.51 0.32 0.29 0.32 0.28

20 31.60 10.26 9.97 4.88 4.75 3.78 3.30 3.04 2.64 1.17 1.09 1.09 0.65 0.64 0.48 0.22 0.22 0.17

id 15.47 10.01 9.85 2.78 1.79 1.96 0.88 0.50 0.62 0.55 0.32 0.11 0.07 0.08 0.03 0.02 0.02 0.02

Figure 7. Mean color distances ΔEab between original and estimated colors of the dataset of Pointer with illuminant E as a function of the number of basis

vectors B and the number of channels K. Dark grey indicates an error > 5 ΔEab, light grey indicates an error > 1 ΔEab. The spectral estimation was done by

estimating the weights of the basis vectors from the channel response and summing up the weighted PCA basis vectors as approximated by the sensor (case

2).

number of channels K

n
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to
rs

B

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 10.65 10.72 3.22 2.99 2.85 2.58 0.93 0.60 0.29 0.22 0.21 0.18 0.14 0.12 0.11 0.10 0.09 0.07

4 47.18 24.82 4.67 2.23 1.49 1.08 0.80 0.40 0.40 0.35 0.24 0.26 0.20 0.18 0.18 0.07 0.07 0.07

5 14.01 9.71 2.85 2.60 2.22 1.17 0.94 0.41 0.34 0.31 0.25 0.27 0.22 0.17 0.16 0.06 0.06 0.06

6 17.34 3.33 2.93 2.84 0.96 0.97 1.11 0.70 0.37 0.35 0.22 0.18 0.18 0.15 0.14 0.12 0.04 0.05

7 10.84 10.72 3.29 2.55 1.36 0.92 0.93 0.33 0.30 0.26 0.25 0.16 0.13 0.07 0.06 0.03 0.04 0.02

8 12.57 10.19 7.00 4.96 3.15 1.34 1.19 0.52 0.36 0.24 0.15 0.15 0.14 0.14 0.12 0.11 0.11 0.08

9 26.86 12.11 9.13 3.91 2.26 1.48 1.30 0.73 0.57 0.31 0.20 0.16 0.12 0.12 0.10 0.11 0.07 0.07

10 32.53 4.96 5.27 2.64 1.83 1.40 1.18 0.60 0.54 0.47 0.29 0.11 0.10 0.10 0.09 0.06 0.06 0.04

11 10.84 10.72 10.25 4.96 3.15 3.08 1.98 1.02 0.40 0.20 0.09 0.08 0.08 0.08 0.04 0.03 0.03 0.03

12 10.45 10.26 6.75 3.67 3.38 2.87 0.90 0.37 0.33 0.14 0.11 0.08 0.06 0.03 0.03 0.03 0.02 0.02

13 27.60 10.93 7.00 4.96 1.84 1.47 1.23 0.50 0.48 0.41 0.40 0.31 0.15 0.07 0.05 0.05 0.03 0.02

14 27.60 10.93 7.00 2.35 2.49 1.92 0.94 0.56 0.55 0.44 0.44 0.15 0.12 0.11 0.09 0.04 0.03 0.03

15 27.60 10.93 7.00 4.96 1.84 1.47 1.04 1.09 0.29 0.19 0.15 0.14 0.12 0.11 0.10 0.06 0.05 0.05

16 10.84 10.72 3.22 3.53 1.48 1.48 0.83 0.56 0.56 0.47 0.41 0.30 0.29 0.13 0.11 0.11 0.06 0.05

17 10.45 10.26 9.88 1.81 1.74 1.07 0.49 0.49 0.47 0.47 0.45 0.21 0.15 0.15 0.15 0.08 0.04 0.03

18 27.04 9.46 4.41 4.35 3.33 2.51 1.50 1.03 1.01 0.40 0.13 0.13 0.12 0.11 0.10 0.03 0.02 0.02

19 33.19 8.25 7.95 7.53 4.82 2.55 2.50 0.91 0.86 0.67 0.26 0.12 0.10 0.07 0.08 0.06 0.05 0.05

20 27.60 10.93 7.00 2.35 2.49 1.92 1.77 1.77 1.59 0.91 0.80 0.72 0.45 0.44 0.16 0.10 0.07 0.07

id 16.41 10.28 10.61 2.30 1.74 2.11 0.95 0.38 0.48 0.45 0.25 0.08 0.05 0.04 0.03 0.01 0.01 0.01

Figure 8. Mean color distances ΔEab between original and estimated colors of the dataset of Pointer for illuminant E as a function of the number of basis

vectors B and the number of channels K. Dark grey indicates an error > 5 ΔEab, light grey indicates an error > 1 ΔEab. The number of approximated basis

vectors does not seem to have a significant influence, though. The spectral estimation was done using Wiener inverse (case 3).
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