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Abstract 
Reflectance estimation from RGB data in natural scenes is 

studied computationally including the use of different 
unsupervised classification techniques to divide the RGB data 
into a number of subgroups with similar characteristics to test 
if these techniques lead to any improvements in the quality of 
the spectral signals obtained. The direct pseudoinverse method 
for recovery of spectral signals from RGB values is used for 
each subgroup and the similarity of the recovered spectral data 
to the original sets is tested by different quality indexes. 
Weighted mean results according to the number of components 
of each subgroup are compared with mean results obtained for 
the whole RGB data set (with no classification algorithms used 
as preprocessing step). Different algorithms and number of 
classes are tested for noise-free and noisy data. In addition, the 
use of an color filter in front of the camera lens is introduced in 
the computations to study spectral recovery from six instead of 
three RGB values for each spectral reflectance. The best results 
are obtained for 8 classes and a probabilistic approach 
clustering algorithm. Quality decreases when a high level of 
noise is added to the data, and the use of a color filter only 
helps to improve results for noise-free data.       

Introduction  

The goal of multispectral imaging is to recover spectral 
radiance or reflectance for each pixel of a scene of interest [1-
2]. Usually a multispectral system consists of an RGB or 
monochrome digital camera coupled with a number of wide-
band or narrow-band colour filters. If the filters are narrow and 
there are many of them, as in hyperspectral imaging, radiance 
or reflectance can be recovered exactly [3], but spectral 
function recovery is an ill-posed problem when a reduced 
number of wide-band color filters is coupled to the digital 
camera. This problem can be partially solved by different 
methods of spectral recovery from camera responses (direct 
reconstruction, reconstruction by interpolation and learning-
based reconstruction) [2, 4, 5]. In the so-called “direct pseudo-
inverse method” [6], the recovery process includes the 
calculation of an estimation matrix D from the training set of 
camera responses linked to the corresponding spectral signals: 

ρ +=D
t t

S       (1) 

where ρt  is the set of camera responses for the training data 
and St is the set of training spectral radiances or reflectances. 
The + sign indicates pseudoinverse matrix. Once D is obtained, 
any set of spectral signals may be recovered from camera 
responses: 

ρ=S D       (2) 

Previous computational results regarding reflectance and 
radiance [6] or illuminant [5] recovery from natural scenes 
indicate that adding successive color filters to the digital 
camera, can improve the spectral and colorimetric quality of 
the recovered signals, although not so clearly when the RGB 
signals are noisy [7] or for illuminant estimation [5].  

Recently, clustering techniques have been applied to 
hyperspectral imaging systems, taking into account spectral as 
well as spatial information, to improve classification results in 
satellite images [8, 9]. Clustering algorithms perform an 
unsupervised classification of a data set in a number of classes 
(indicated by the user), so they are very useful when a priori 
knowledge of the data structure is not available.  

The main aim of this study is to provide some preliminary 
data to test the hypothesis of a possible improvement in 
recovery quality of spectral reflectances in natural scenes from 
camera responses by using clustering techniques as a previous 
step. So we first simulate the capture of a natural scene with or 
without successive color filters in front of an RGB digital 
camera, then classify the camera responses using clustering, 
and train separately the different classes obtained. Afterwards, 
we check the recovery quality by using a test data set not 
included in the training phase, and classified using the same 
criteria as for the training data. The influence of noise is tested 
by comparing results obtained with and without a high level of 
additive simulated thermal and shot noise. In addition, we 
obtain results for different number of classes and study the 
evolution of spectral and colorimetric quality measures of the 
recovered data with the number of classes used. Finally, for a 
fixed number or classes, several clustering algorithms based on 
different approaches are used to see which provides better 
results.  
 

Method 

We have calculated the RGB camera responses with and 
without a color filter in front of the camera, using a set of 
hyperspectral data from a high spatial resolution database [3] 
which included rural scenes in the region of Minho (Portugal). 
The camera whose spectral sensitivity was used in the 
computations was a Retiga 1300 (QImaging Corp, Canada) with 
12-bit intensity resolution per channel. When the effect of added 
noise was studied, we have introduced a 5% variance level of 
additive noise, simulating thermal and shot noise. The noise was 
introduced as shown in eq. (3). 
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ρ ρ= +
n

N  (3) 

where ρn are the noisy digital counts and N is a column vector of 
three (without filter) or six (with added filter) noise values [7]. 
We have calculated the camera responses for a set of 228010 
reflectances in the training group and a set of 37210 reflectances 
in the test group (none of them included in the training set). 
Then, we have used eq. (1) and (2) to obtain the recovered 
reflectances for the test set. This recovery will serve as a 
reference for testing the effect of applying clustering algorithms 
to the camera responses. 

Once the camera responses for each condition (noisy or 
noise-free, with or without filter) were computed, we have used 
a k-means algorithm [10] with random initialization values to 
divide the training set into 2, 4, 8, 16 and 32 classes. Then we 
have computed the recovery matrix D for each class and 
obtained the recovered reflectances for the test set (having 
previously classified the test data according to the algorithm’s 
output). We have run the k-means algorithm five times and 
selected the output giving a better quality (as derived from the 
Xie and Beni and Separation indexes [10]). Finally, we have 
used other two clustering algorithms: Fuzzy-C Means (FCC) 
[10] and a probabilistic Gaussian Mixture Model (GMM) [11] 
with 2, 4 and 8 classes to test the effect of the clustering 
algorithm on the recovery quality. 

 Two spectral (Goodness-of-Fit-Coefficient or GFC, 
defined as the cosine of the angle between original and 
recovered signals in the reflectance vector space; and Root 
Mean Square Error or RMSE) and one colorimetric (CIELAB 
color difference) quality measures were used to assess similarity 
between original and recovered reflectances.  

Results 

1. Effect of the number of classes on recovery quality for the 
k-means algorithm. 

 
In Figure 1 we can see weighted mean ∆Eab color 

differences for reflectance recovery in the four experimental 
conditions as a function of the number of classes used as input 
to the k-means clustering algorithm. Results with 0 classes 
correspond to recovery without subdivision of the digital 
counts. The use of noisy camera responses leads to high color 
differences, as expected, given the high noise level, and also 
influences the performance as the number of classes varies. We 
can see that differences tend to become stationary from 8 classes 
on. In the noise-free data, recovery with filter is better than 
without filter, while the opposite trend is found for the noisy 
data. This is in agreement with other recent experimental results 
regarding reflectance and illuminant estimation with noisy data 
[3, 7]. We have performed a one-way ANOVA for each 
condition and the factor number of classes was always 
significant (p<0.001). Data for GFC and RMSE correlate well 
with color differences. 
 

 

Table 1 shows GFC values for the four conditions tested and the 
k-means algorithm with different number of classes. We can see 
that the trends shown by color differences are confirmed by the 
spectral quality index, with slight differences regarding the MGF 
noisy data, which show a slow but sustained increase in 
recovery quality when the number of classes increases.  

Table 1. GFC mean values for k-means. 

Nr. of classes GFC 
 

Condition 

0 0.9346 WF No Noise 

0 0.8952 WF Noisy 
0 0.9649 MGF No noise 
0 0.8808 MGF Noisy 

2 0.9425 WF No Noise 

2 0.9010 WF Noisy 

2 0.9669 MGF No noise 

2 0.8854 MGF Noisy 

4 0.9469 WF No Noise 

4 0.9101 WF Noisy 

4 0.9681 MGF No noise 

4 0.8956 MGF Noisy 

8 0.9459 WF No Noise 

8 0.9179 WF Noisy 

8 0.9649 MGF No noise 

8 0.9053 MGF Noisy 

16 0.9438 WF No Noise 

16 0.9214 WF Noisy 

16 0.9664 MGF No noise 

16 0.9182 MGF Noisy 

32 0.9405 WF No Noise 

32 0.9218 WF Noisy 

32 0.9650 MGF No noise 

32 0.9201 MGF Noisy 
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Figure 1. Color differences for k-means clustering. 
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2. Effect of the algorithm for 2, 4 and 8 classes. 
 
In Figure 2 we show GFC for the three algorithms tested 

and the four experimental conditions for 8 classes. Fuzzy-C 
means is slightly better than k-means for noise-free data, but 
the recovery is worse than k-means for noisy data, showing that 
this algorithm would be more sensitive to noise. The 
probabilistic GMM algorithm is consistently better than k-
means for all four conditions. We can also see in the figure that 
recovery is better for noise-free than for noisy data and that 
adding the color filter improves recovery only in the noise-free 
data set, as we have pointed out in the previous subsection. We 
have performed a repeated-measures ANOVA as statistical 
analysis with these data, including three factors: algorithm, 
noise and filter. All three were significant (p<0.001), and only 
the interaction algorithm x noise did not reach significance 
level (p=0.551), showing that the effect of noise is independent 
of the algorithm used. The results for RMSE and ∆Eab showed 
very similar trends. In Table 2 we show RMSE results for 2 
and 4 classes and the different algorithms and experimental 
conditions tested. In RMSE, we can see that FCM and GMM 
are consistently better than k-means even for noisy data, 
showing that these two algorithms produce spectral recoveries 
more similar to the original data in absolute scale (GFC values 
are independent of scale factors).  

Figure 2. GFC for eight classes and the different algorithms tested. 

Table 2. RMSE mean values for 2 and 4 classes and the 
different algorithms and conditions tested. 

Nr. of classes RMSE 
 

Algortihm/condition 

2 0.0987 KM/ WF No Noise 
2 0.1414 KM/ WF Noisy 
2 0.0599 KM/ MGF No noise 

2 0.1775 KM/ MGF Noisy 

2 0.0349 FCM/ WF No Noise 

2 0.0503 FCM/ WF Noisy 

2 0.0249 FCM/ MGF No noise 

2 0.0545 FCM/ MGF Noisy 

2 0.0326 GMM/ WF No Noise 

2 0.0476 GMM/ WF Noisy 

2 0.0232 GMM/ MGF No noise 

2 0.0467 GMM/ MGF Noisy 

4 0.0741 KM/ WF No Noise 

4 0.1024 KM/ WF Noisy 

4 0.0493 KM/ MGF No noise 

4 0.1322 KM/ MGF Noisy 

4 0.0345 FCM/ WF No Noise 

4 0.0486 FCM/ WF Noisy 

4 0.0253 FCM/ MGF No noise 

4 0.0524 FCM/ MGF Noisy 

4 0.0322 GMM/ WF No Noise 

4 0.0468 GMM/ WF Noisy 

4 0.0235 GMM/ MGF No noise 

4 0.0434 GMM/ MGF Noisy 

 
Conclusions 
 
 In conclusion, we have tested unsupervised classification of 
digital counts for reflectance recovery and we have found that 
the best results are obtained using al least 8 classes and the 
GMM algorithm. Clustering as a preprocessing step helps in 
improving recovery quality for spectral reflectance estimation 
from RGB values. The addition of a color filter helps improving 
recovery only for noise-free data or possibly for low-noise data 
as well. 
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