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Abstract 
Spectral imaging can provide spectral information from 

which spectral radiance or reflectance can be recovered at 
each image pixel. Recovery algorithms lead to good spectral 
and colorimetric performance by directly transforming RGB 
digital counts to spectral reflectances, but his approach is 
sensitive to the size and composition of the training set. What 
we propose here is a supervised method to select the most 
appropriate samples from a training database to buld the 
transformation matrix relating digital counts to spectral 
reflectances. Thus, this approach is tested with real images. 

 

Introduction  
Multispectral imaging uses a digital camera coupled or not 

with colour filters of different spectral bands, ranging from just 
one band, as in a monochromatic system, to hundreds of 
components, as in a ultraspectral system [1]. The main 
advantage of spectral imaging in comparison with conventional 
spectroradiometric measurements is that they can provide 
spectral information from which spectral radiance or 
reflectance can be recovered at each image pixel. During the 
last years, many different approaches have been proposed for 
spectral reflectance recovery [2]. Among these techniques, 
recovery algorithms lead to good spectral and colorimetric 
performance by directly transforming RGB digital counts to 
spectral reflectances [3]. This approach can be sensitive to the 
size and composition of the training set of reflectances [4]. 
Other authors have shown that depending on the spectral 
application (e. g. spectral pigment analysis in art pictures) the 
quality of spectral recovery may change dramatically. In this 
work we propose a supervised training sample selection method 
for spectral reflectance estimation based on a linear pseudo-
inverse algorithm. The method uses a set of training samples 
selected from a database which are in the neighborhood of the 
target sample to optimize the recovery matrix relating digital 
counts to spectral reflectances. What we propose here is to 
optimize the building process of the transformation matrix 
using a learning-based algorithm. 

Recently different computational results suggest that using 
cut off filters to recover reflectances or illuminants may or not 
improve the recovery performance, depending on the presence 
of noise [5, 7]. As these results are not clear for noisy data, we 
will also analyze here the effects of adding successive cut off 
filters when natural scenes are captured using a real RGB 
camera. 

Method  
In the present work, we used real images captured with an 

RGB digital color camera from QImaging (model Retiga 1300, 
12 bits). The images captured were the Gretag Macbeth Color 
Checker DC and Color Checker rendition chart [8]. In a second 

step we added cut off filters in front of the camera lens (GG475 
and OG550, from OWIS GMBH) to study possible 
improvements. 

Given a set of training spectra S (which can be spectral 
radiances or reflectances) and the corresponding set of 
experimental camera responses ρ, a recovery transformation 
matrix D is defined by D = Sρ+, where ρ+  is the pseudo-inverse 
of ρ. If ρ has full rank, then ρ+ = (ρT ρ) ρT, where ρT is the 
transpose of ρ. An estimate of Ŝ1 of a set of test spectra S1 may 
then be obtained from the corresponding set of camera 
responses ρ1  by applying the transformation D, that is Ŝ1 = Dρ1 
[7]. 

We present here a method to select the most appropriate 
samples from a training database to be used as training set to 
recover reflectances from RGB data of a test image, without 
any need of knowing any spectral information of the test 
sample. The first step is to calculate CIELAB coordinates from 
both test and training set using real RGB digital counts captured 
with a CCD camera in both cases. Once we have this 
information, CIELAB color difference d

i
 is calculated between 

each test sample and the whole training set. It allows us to sort 
the training set for each test sample from minimum to 
maximum color difference. 

To choose the training set elements to recover reflectance 
for each test sample, we set a sphere in each element of the test 
set in the CIELAB space, and we will use the elements of the 
training set inside this sphere. To calculate the radius of this 
sphere, we implement an iterative process as explained in  
Figure 1. It sets an initial sphere in the test sample, looks for the 
elements of the training set inside this sphere and compute the 
mean of its distances, giving them a weight that depends on the 
number of iterations and the number of elements inside the 
sphere. Then, the radius of the sphere is increased and the 
process is repeated decreasing the weight.  

The algorithm description is: 
- Fix a starting radius r

0
, a constant k, and the number of 

iterations a. In this work the appropriate values of those 
constants comes from previous experimental results. 

- Set a first sphere of radius r
0
 centered on a test sample in 

the CIELAB space, and look for the elements of the training set 
inside of the sphere. Those elements will have CIELAB 
differences d

i
 • r

0
. Now, it is possible to calculate a weighted 

mean radius T
0
 as: 

T
0
 = Ó (d

i
 * a) (1) 

And also to calculate a normalization factor w
0
 as: 

w
0 
 = c

0
 * a (2) 

where c
0
 represents the total number of elements inside this 

sphere. 
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- The iteration goes on increasing the value of r
0
 as: r

1
 = r

0
 

+ k, and looking for the new elements between the new sphere 
with radius r

1
 and the previous one, those elements will have 

CIELAB differences r
0 
< d

i
 • r

1
. In this step, the radius and the 

normalization factor will be calculated as: 

T
i
 = Ó [d

i
 * (a-1)] + T

0
 (3) 

w
1
 = c

1
 *(a -1) + w

0
 (4) 

- After a iterations, we get a final radius T, given by: 

T = T
a – 1 

/ w
a - 1

 (5) 

The elements inside the sphere with radius T will be the 
elements of the training set used to recover reflectance of this 
particular test sample. This process will be repeated for each 
test sample. 

In Figure 1, there is a graphic simplified example of the 
process. On it, the test sample is shown as a ‘*’. It corresponds 
with the MacBeth Color Checker (CC) sample number 15. With 
the symbol ‘o’ are shown the 25 samples from MacBeth Digital 
Color Checker (DC) that have the smallest CIELAB distance to 
this test sample. 

 

Results and comments 
Recoveries were made using all the chips from the 

MacBeth Digital Color Checker (DC) as training data in all 
cases. As test sets, we used both the DC and MacBeth Color 
Checker (CC). 

To avoid as many as possible sources of error, a correction 
was made to the captured images: we tried to avoid the high 
frequency temporal noise. This is the noise affecting the system 
when captures follow each other in less than a minute time. It is 
possible to avoid it capturing successive images and 
promediating them. From a preliminary study [6], we conclude  
that it was necessary to promediate over 100 images to avoid 
this high frequency temporal noise.  

In evaluating the results we have analyzed the 
performance of the algorithm in a variety of different quality 
measures. We used two metrics to quantify both the spectral 
and colorimetric quality of the recovered reflectance: the 
goodness-of-fit-coefficient (GFC) and the CIELAB color 
difference (ÄE). The GFC is based on Schwartz’s inequality 
and is defined as the cosine of the angle between the original 
signal f(ë) and the recovered signal f

r
(ë), thus 

Figure 1: Followed steps in the radius T calculation process. In descent 
order: (a) First, test sample (*) and training set (o) CIELAB coordinates 
are calculated. (b) Second, a sphere of radius r0 is centred on the test 
sample, and the training samples inside this sphere are used to 
calculate the weighted radius T0. (c) A second sphere with radius r0 + k 
is centred in the test sample. The elements of the training set between 
the first and the second sphere are used to calculate the weighted 
radius T1. This third step is repeated as many times as necessary. (d) 
At last, a final radius T is calculated, and the training samples inside the 
corresponding sphere are used as training set to recover this test 
sample reflectance.. 
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This measurement of spectral similarity has the advantage of 
not being affected by scale factors. Colorimetrically accurate 
reflectance estimations require GFC > 0.995; GFC > 0.999 
indicates quite good spectral fit, and GFC > 0.9999 an almost-
exact fit [9].  

The GFC mean results are shown in Table 1 and CIELAB 
mean results are shown in Table 2. In those tables, 0 means 
images captured without filter (3 channels), 1 means images 
captured without filter and with GG475 filter (6 channels), and 
2 means images captured without filter and with filters GG475 
and OG550 (9 channels). In those tables, traditional method 
results for both DC and CC test sets are shown first, and 
supervised method results for the same test sets are shown in 
second place. The reason why we use six channels with the 
filter GG475 instead of filter OG550, comes from experimental 
results: they were better with filter GG475. 

As it can be seen, in all cases supervised method results 
are better than the traditional method results. When DC is used 
as test and training set, we get better results as we increase the 
number of sensors. But when we recover CC with DC, we can 

see that using one filter (6 channels) we can get more or less the 
same results, but using two filters (9 channels) GFC values 
decreases a lot and CIELAB values increases. The reason why 
it happens is that when we add more channels we are adding 
more sources of noise too, and it makes results go worse [5]. 

Figure 2 shows some examples of recovered spectra 
corresponding to the median GFC, using both linear 
pseudoinverse method (LPI) and supervised linear pseudo-
inverse method; and using no filter. Original spectra are 
represented with continuous line and recovered spectra by 
dashed lines. Again, in all cases we get better spectral and 
colorimetric results with the supervised method; and, even in 
the recovery of the CC test set with the DC training set, we get 
GFC values over 0.995. 

The results suggest that the supervised training method 
consistently outperforms the standard method of using the 
complete training data set. We can get better results with one 
color filter than using two, in agreement with previous results 
using noisy data for illuminant and reflectance estimation. 

 

 

Figure 2: Examples of recovered reflectances using both methods. 
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 Traditional method Supervised method 
Test sets 0 1 2 0 1 2 

DC 0.9907 0.9941 0.9970 0.9960 0.9978 0.9985 
CC 0.9879 0.9870 0.7651 0.9952 0.9935 0.7947 

Table 1: Comparison of spectral performance (GFC) between the traditional method and the supervised method 

 Traditional method Supervised method 
Test sets 0 1 2 0 1 2 

DC 2.03 1.29 0.80 1.28 0.71 0.50 
CC 2.56 1.95 16.33 1.52 1.27 13.04 

Table 2: Comparison of colorimetric performance (color difference CIELAB) between the traditional method and the 
supervised method. 
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