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Abstract
In this work, we propose a new algorithm for spectral im-

age segmentation based on the use of a kernel matrix. An ef-
ficient multiscale method is presented for accelerating spectral
image segmentation. The multiscale strategy uses the lattice ge-
ometry of images to construct an image pyramid whose hierarchy
provides a framework for rapidly estimating eigenvectors of nor-
malized kernel matrices. To prevent the boundaries from deterio-
rating, the image size on the top level of the pyramid is generally
required to be around 75×75, where the eigenvectors of nor-
malized kernel matrices would be approximately solved by the
Nyström method. Within this hierarchical structure, the coarse
solution is increasingly propagated to finer levels and is refined
using subspace iteration. Experimental results have shown that
the proposed method can perform significantly well in spectral
image segmentation as well as speed up the approximation of the
eigenvectors of normalized kernel matrices.

Introduction
Spectral image segmentation has drawn a lot attention

[5, 8, 9, 10, 12, 13] in recent years due to its potential applications
in forest assessment, mineral exploration, medical imaging, and
so on. The main advantage of spectral images comprising more
than 20 spectral bands is the large amount of color information
involved, which dramatically improves the ability to detect indi-
vidual materials or separate areas with visually different colors.

Paclik et al. combined standard pattern recognition algo-
rithms and proposed a new segmentation algorithm in [12]. Cre-
spo et al. presented in [5] a segmentation system that consists of
a set of neural networks based on Gaussian synapse. In [13], Pal
and Mitra addressed the problem of segmentation by integrating
rough-set theory, the EM algorithm and minimal spanning tree
clustering. Mercier et al. [9] have developed a method for the
segmentation of a spectral data cube based on hidden Markov
chain. Mohammad-Djafari et al. [10] proposed a Bayesian esti-
mation approach with an appropriate hierachical model with hid-
den markovian variables. In [8], Kwon and Nasrabadi realized
a kernel matched subspace detector (KMSD) to partition targets
from a spectral image. However, almost all of these methods
were developed for special purposes or had limitations in their
practical applications. And, most of these methods viewed each
pixel in a spectral image as a multdimensional vector and did not
consider characteristics of spectra such as geometric features. To
address these problems, therefore, a kernel based approach to
spectral image segmentation is proposed in this paper.

In spectral spaces, each color is represented by a spectral
curve; thus, pixel values in spectral images generated by spectral
imaging sensors correspond to a vector whose entries describe

the energy value in some wave band. Although spectral curves
of an image are distinct, homogeneous regions are, in general,
characterized by similar spectra. In other words, the wealth of
spectral information available in color spectra provides critical
cues for distinguishing colors and regions. To make full use of
the abundant color information contained in spectral images, we
take into consideration the geometric features as well as the mag-
nitude of spectra in calculating the similarity between pixels.

In this paper we present a spectral kernel clustering method
for multiple clusters and apply it to spectral image segmenta-
tion1. Spectral methods for image segmentation are based on
eigendecomposition of an affinity matrix. Weiss stated in [16]
that the affinity matrix contains information about segmentation
from visual inspection, and pointed out that, by using the top
eigenvectors of such a matrix simultaneously, one could extract
a representation that leads trivially to a discrete segmentation. In
[11], Ng. et al. proposed a spectral clustering approach and gave
conditions under which eigenvectors could be used to compute a
reasonable cluster. Yu and Shi have provided in [18] a discretiza-
tion method to find group indicators from obtained eigenvectors.
Cristianimi et al. [6] generalized spectral methods from affinity
matrices to kernel matrices and proposed two cost functions to
measure the quality of the bipartitioning of a data set.

The key to spectral kernel clustering is to extract a feature
space spanned by several leading eigenvectors of a normalized
kernel matrix. Due to the huge amount of data in spectral im-
ages, constructing and solving a kernel matrix become difficult,
even impossible, on common computers. To save computational
and storage costs, we introduce the multiscale strategy combined
with the Nyström method [7]. This strategy first downsamples
spectral images and builds a hierarchical structure, such as a
pyramid. Eigenvectors are computed on the top scale of the pyra-
mid using the Nyström method and then are propagated to finer
scales, based on the similarity between neighboring pixels.

Experiments showed that the combination of the multiscale
and Nyström methods can prevent boundaries deteriorating be-
tween homogeneous regions during downsampling. Thus, our
approach has been shown to be effective in providing good seg-
mentation while speeding up the estimation of eigenvectors of
large matrices. In addition, the proposed method for spectral im-
age segmentation is robust to illumination changes and sensitive
to changes in color arising from hue or chroma.

1Please note that the word ’spectral’ appears twice in this sentence and
has completely different meanings in each case: the former is a mathe-
matical concept and represents the eigenvalues of a matrix; the latter is a
physical concept and is used to describe the distribution of energy emitted
by a radiant source.
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Figure 1. A three-stage flowchart of spectral image segmentation: spectral

image preprocessing, multiscale strategy and discretization.

Spectral Image Preprocessing

As shown in Fig. 1, the proposed approach to spectral im-
age segmentation can be divided into three stages: preprocess-
ing, multiscale strategy and discretization. Given a spectral im-
age, we first implement image preprocessing through smoothing,
normalizing and spectrum extension. In spectrum extension, we
concatenate magnitude, slope and curvature of spectra and form a
fused space in which the similarity between color spectra is com-
puted. Then our multiscale strategy is used to fast solve eigenvec-
tors of the normalized kernel matrix. The image is downsampled
in the spatial domain to produce an image pyramid. On the top
scale of the pyramid, the eigenvectors are approximated with the
Nyström method and are subsequently propagated into the other
scales of the pyramid. The procedure of propagating from coarse
to fine scales is called scale extension. Finally, the segmentation
result could be obtained by discretizing the eigenvectors on the
original scale. The discretization method we adopt was proposed
by Yu and Shi in [18], which uses an alternating optimization
procedure.

Spectral Images

An s-band spectral image is a two-dimensional grid (µ×ν)
of pixels, with an s-dimensional vector for each pixel. µ and ν
denote the height and width of an image. Therefore, a spectral
image can be viewed as a set of spectra Θ composed of l (l=µν)
data with s spectral bands. One of the important characteristics
of spectral images is that they contain a large number of spec-
tral channels in the optical wavelength range. The number of
channels can vary from tens to hundreds. Compared to color im-
ages in the RGB space, spectral images have a clear advantage in
terms of describing color objects.

Smoothing and Normalizing

To remove noise arising during spectral image acquisition, it
is necessary to do smoothing before segmentation. In our work,
smoothing has two aspects: smoothing of spectral curves via
a cubic spline curve and reducing spots or small regions while
preserving edges in each component image via median filtering.

It is known that spectral curves incorporate three types of
color information: hue, light and chroma. To cluster different
colors in a correct way, normalization is necessary. Normaliza-
tion could reduce the effect of illumination that does not provide
useful information for color clustering. The first step of normal-
izing spectra is to do centering by subtracting the mean of the
spectral data from each spectral value. Subsequently, the norm
of the spectral data is made equal to 1 in the Euclidean sense
by dividing each spectral value by the square root of the sum of
squares of the spectral data.

For instance, given a set of spectra Θ composed of l data

with s spectral channels,
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Spectrum Extension
In this work, we described the geometric shape of color

spectra by the slope Φ and curvature Ψ of spectral curves that
can be computed with finite difference methods. Since curve
smoothing is done at the preprocessing stage, we can efficiently
use finite difference methods to approximate the slope and cur-
vature of spectral curves.

For the analysis of spectral images, we need to incorporate
not only the magnitude but also the geometric features of spec-
tra into the similarity measure because the geometric shape of
spectral curves contains significant cues about clustering as well.
The natural way of combining magnitude, slope and curvature
of spectra is to directly concatenate them after weighting. As a
result, we get a fused space ∆={δi}l

i=1. The combination pro-
cedure is called spectrum extension. We use weight coefficients,
α , β and γ , such that 0≤α , β , γ≤1 and α+β+γ=1, as impact
factors of these three attributes to adjust their contribution to the
similarity measure. Due to the fact that α+β+γ=1, we actually
only need to preset two parameters. In this work, α and β were
used as free parameters.

Spectral Kernel Clustering
The spectral kernel clustering method draws inspiration

from [6]. Since a l×l kernel matrix K can represent the simi-
larity between l elements (data points or pixels), we can use K
to predict whether two elements are in the same cluster. Spectral
kernel clustering can be treated as a problem of minimizing the
inter-cluster similarity by virtue of K

Let Y∈R
l×r be the indicator matrix, each column of which,

i.e., yt ∈ {0,1}l , has nonzero components exactly at points that
belong to the t-th cluster. Finding an indicator matrix Y leads to
an eigendecompositon problem. Let Z=D1/2Y and impose a con-
straint on Z: ZT Z=Ir, where Ir denotes the r×r identity matrix.
Let

P = D−1/2KD−1/2, (3)

which is essentially the normalization of kernel matrix K. Re-
laxing Z into the continuous domain turns the discrete problem
into a tractable continuous optimization problem whose solutions
involve the first r largest eigenvectors V of P [3].

To find the indicator matrix, we need to discretize the con-
tinuous solution of Y =D−1/2Z, where the rows of Y are those of
Z scaled by inverse square root of D since D−1/2 is diagonal.
Here we adopted the discretization method Yu and Shi proposed
in [18].
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The Multiscale Strategy for Spectral Image
Segmentation

Spectral clustering methods are extremely attractive in that
they are based on eigendecomposition algorithms whose stability
is well understood. Nevertheless, eigendecomposition not only
is time-consuming but also requires a huge amount of memory
space in the context of segmentation. Some works to address
such problems have recently appeared and can be divided into
two categories: one is based on the Nyström method in [2, 7,
17]; the other builds on the hierarchical structure of the image
pyramid [4, 14, 15]. Both of them have individual drawbacks: 1)
the Nyström method is still restricted to the size of image(e.g.,
when the image resolution is 300×300, it is almost impossible to
compute eigenvectors using the method presented in [7]); 2) in
the coarse level of the multiscale strategy, the contours or shapes
of homogeneous regions tend to become blurry.

To overcome the drawbacks, we combine these two classes
of methods in spectral image segmentation and adopt the Nystöm
method only on the top scale of the pyramid. We assume that the
contours in an image can be faithfully preserved when this image
is downsampled till the spatial resolution is around 75×75. In
this case, the number of scales h is determined in terms of the
expression below,

h = 1+max(�log2
max(µ ,ν)

150
�,0), (4)

where the symbol �·� denotes rounding to the nearest integer to-
wards positive infinity.

In our multiscale strategy, we first downsample the input
spectral image in the spatial domain and construct an image pyra-
mid. The downsampling procedure is quite simple. One-time
downsampling is composed of two steps. We first take a pixel
every two pixels along the horizontal direction on the original
image; then do the same along the vertical direction on the image
obtained after horizontal sampling. After sampling in both hori-
zontal and vertical directions, we can get an image on a coarser
scale. If the downsampling procedure is repeated h-1 times, h-1
different scales will be produced. Linking all these scales and the
original scale together will generate a h-level image pyramid.

The Nyström Method
On the top of the pyramid, the Nyström method proposed in

[7] is used to approximately solve eigenvectors V of the normal-
ized kernel matrix P (3). Let matrix P be partitioned by randomly
choosing n columns and rows into four blocks

P =
[

A B
BT C

]
,

where A is a n×n symmetric matrix, B is of size n×(l-n) and
C is a (l-n)×(l-n) symmetric matrix. According to the Nyström
method, C can be approximated with BT A−1B; therefore, it is
possible to approximately compute P as

P̂ =
[

A B
BT BT A−1B

]
.

The quality of approximation of P can be estimated via the norm
of ‖C−BT A−1B‖. As discussed in [7], selecting about 1 percent
of all data to form matrix A, i.e., n ≈ 0.01l, is generally enough
for reconstructing the original normalized kernel matrix P well.

Let G=A + A−1/2BBT A−1/2 and diagonalize it as G =
UGΛGUT

G . Defining matrix V as

V =
[

A
BT

]
A−1/2UGΛ

−1/2
G , (5)

Figure 2. Multiscale segmentation of spectral images. Left: downsam-

pling input spectral images. Right: the upper three images represent the

approximated eigenvectors and the bottom one is the segmentation result.

we can conclude that P̂ is diagonalized by V and ΛG, i.e., P̂ =
VΛGV T and V TV = I.

In the procedure described above, computing G and V
presents a challenge. It is clear that the computation complexity
in these two steps is O(ln2 +nl2). It remains fairly prohibitive if
the image size is more than 300×300.

The Segmentation Algorithm
Given a spectral image of size µ×ν×s, the number of seg-

ments r and weight coefficients α and β ,

1. Implement spectral image preprocessing by smoothing,
normalizing (Eqs. 1 and 2) extending spectra and gener-
ating the fused space ∆ by using α and β .

2. Compute the number of scales h using Eq. 4 and down-
sample the image in the spatial domain to form an image
pyramid with h scales.

3. Construct and normalize kernel matrix Ki using Eq. 3 in ∆.
Here we use Ki (i=1, · · · ,h) to denote a similarity matrix on
the i-th scale and likewise for Di, Pi and Vi.

4. Compute the first r largest eigenvectors Vi of matrix Pi us-
ing the Nystöm method (Eq. 5) on the top of the pyramid
(i.e., i=h).

5. Extend current eigenvectors Vi to Vi−1 on the i-1-th scale
according to the similarity between neighboring pixels and
refine Vi−1 with Pi−1 using subspace iteration, until eigen-
vectors V1 on the original scale are obtained.

6. Discretize D−1/2V1, by using the discretization method
proposed in [18], to get the segmentation indicator matrix
Y .

The schematic illustration of the multiscale strategy for
spectral image segmentation is shown in Fig. 2. It is worth noting
that matrices K and P, except on the top level where P is approx-
imated by P̂, are quite sparse since only the similarity between
pixels in the 8-neighborhood needs to be worked out.

Experiments
This section presents the results of experiments conducted

to evaluate and analyze the performance of the proposed method
for spectral image segmentation. Here we mainly investigate the
ability of the proposed method to produce reliable segmentations
on spectral images with a variety of properties. All the spec-
tral images we use are available in [1]. To highlight boundaries
between segments, we impose boundaries on the color image re-
produced from the input spectral image (as in Fig. 3).

The tested spectral images are introduced in Table I. They
vary greatly in terms of content, image size and spectral resolu-
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TABLE I
Tested spectral images

Parameters
Image Size Kernel Function h r α β
pentest 141×153×81 ANOVA 2 5 0.50 0.50
braltest 141×131×81 ANOVA 1 5 0.60 0.30
younggirl 147×87×61 ANOVA 1 3 0.50 0.50
scene 256×256×31 Gaussian 2 3 1.00 0.00
jussi 806×650×31 polynomial 4 3 0.35 0.35
toy1 363×330×31 ANOVA 3 3 0.34 0.33
toy2 660×330×31 ANOVA 4 3 0.60 0.30
toy3 600×564×31 ANOVA 3 4 1.00 0.00
toy4 344×576×31 ANOVA 3 4 0.60 0.40

tion: some of them have clear features of highlight (e.g., pen-
test, braltest and toy1) or shadow (e.g., braltest, scene and toy2)
and the others either have abundant color information (e.g., toy2,
toy3 and toy4), or depict natural scenery (e.g., scene) and human
body (e.g., younggirl and jussi). We used the ANOVA kernel in
all cases except for the Gaussian kernel in the ”scene” image and
the polynomial kernel in the ”jussi” image. Parameters were set
in an optimal way as shown in Table I. r, α and β were input
beforehand and h was estimated automatically during segmenta-
tion. The segmentation results are shown in Fig. 3. Despite the
variation of these images, the proposed method can work signifi-
cantly well under all circumstances. This further strengthens our
arguments: 1) the proposed approach to spectral image segmen-
tation is quite stable and is robust to illumination changes, from
highlight to shadow; 2) it is sensitive even to slight changes in
color arising from hue or chroma.

Because simple eigendecomposition is done only on the top
level, the proposed algorithm is efficient. Moreover, it can use
massive parallel processing, especially at the finer (i.e., the most
expensive) scales. Our current implementation takes less than 1
min to complete all the computations for an 800×600×31 spec-
tral image using Matlab on a Pentium 4, 3.0-GHz processor. Fur-
ther optimization is still possible on a parallel computer.

Conclusions
In this work, we put forth an approach to spectral image seg-

mentation. We propose combining the multiscale and Nyström
methods in spectral image segmentation that can accelerate the
computation of eigenvectors of a normalized kernel matrix. We
also propose slope and curvature of color spectra to incorporate
geometric features of spectra into similarity measures, which can
make full use of abundant color information contained in spec-
tral images. The experimental results showed that the proposed
approach to spectral image segmentation performs very well in
distinguishing different colors in terms of hue and chroma.
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[4] T. Cour, F. Bénézit, and J. Shi. Spectral segmentation with multi-
scale graph decomposition. In CVPR (2), pages 1124–1131, 2005.

[5] J. L. Crespo, R. J. Duro, and F. L. Pena. Gaussian synapse anns in
multi- and hyperspectral image data analysis. IEEE Transactions
on Instrumentation and Measurement, 52(3):724–732, 2003.

[6] N. Cristianini, J. Shawe-Taylor, and J. S. Kandola. Spectral kernel
methods for clustering. In NIPS, pages 649–655, 2001.

[7] C. Fowlkes, S. Belongie, F. R. K. Chung, and J. Malik. Spectral
grouping using the nyström method. IEEE Trans. Pattern Anal.
Mach. Intell., 26(2):214–225, 2004.

[8] H. Kwon and N. M. Nasrabadi. Kernel matched subspace detec-
tors for hyperspectral target detection. IEEE PAMI, 28(2):178–194,
2006.

[9] G. Mercier, S. Derrode, and M. Lennon. Hyperspectral image seg-
mentation with markov chain model. In IGARSS’03, volume 122,
pages 21–25, 2003.

[10] A. Mohammad-Djafari, N. Bali, and A. Mohammadpour. Hierar-
chical markovian models for hyperspectral image segmentation. In
IWICPAS, pages 416–424, 2006.

[11] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Anal-
ysis and an algorithm. In NIPS, pages 849–856, 2001.

[12] P. Paclı́k, R. P. W. Duin, G. M. P. van Kempen, and R. Kohlus. Seg-
mentation of multi-spectral images using the combined classifier
approach. Image Vision Comput., 21(6):473–482, 2003.

[13] S. K. Pal and P. Mitra. Multispectral image segmentation using
the rough-set-initialized em algorithm. IEEE Transactions on Geo-
science and Remote Sensing, 40(11):2495–2501, 2002.

[14] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy
and adaptivity in segmenting visual scenes. Nature, 442(17):810–
813, 2006.

[15] D. Tolliver, R. T. Collins, and S. Baker. Multilevel spectral
partitioning for efficient image segmentation and tracking. In
WACV/MOTION, pages 414–420, 2005.

[16] Y. Weiss. Segmentation using eigenvectors: A unifying view. In
ICCV (2), pages 975–982, 1999.

[17] C. K. I. Williams and M. Seeger. Using the nyström method to
speed up kernel machines. In NIPS, pages 682–688, 2000.

[18] S. X. Yu and J. Shi. Multiclass spectral clustering. In ICCV, pages
313–319, 2003.

Author Biography
Hongyu Li is a PhD student at the Department of Computer Science

and Statistics, the University of Joensuu, Finland and at the Department
of Computer Science and Engineering, Fudan University, China. His

CGIV 2008 and MCS’08 Final Program and Proceedings 497



(a) pentest (b) braltest (c) younggirl

(d) scene (e) jussi (f) toy1

(g) toy2 (h) toy3

(i) toy4
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