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Abstract
The aim of this paper is to present a general methodology

based on multispectral mathematical morphology in order to seg-

ment multispectral images. The methods consists in computing

a probability density function pdf of contours conditioned by a

spectral classification. The pdf is conditioned through regional-

ized random balls markers thanks to a new algorithm. Therefore

the pdf contains spatial and spectral information. Finally, the

pdf is segmented by a watershed with seeds (i.e. markers) com-

ing from the classification.

Consequently, a complete method, based on a classification-

driven stochastic watershed is introduced. This approach re-

quires a unique and robust parameter: the number of classes

which is the same for similar images.

Moreover, an efficient way to select factor axes, of Factor

Correspondence Analysis (FCA), based on signal to noise ratio

on factor pixels is presented.

Keywords: Stochastic Watershed, multispectral images, re-

gionalized random balls, classification-driven stochastic water-

shed, marginal probability density function.

Introduction
Watershed transformation (WS) requires, for image seg-

mentation, a function to flood, generally the norm of a gradi-

ent (i.e. a scalar function), and seeds (markers) for each region

of interest [2]. This powerful approach is a deterministic process

which tends to build irregular contours. The stochastic watershed

was proposed in order to regularize and to produce more signif-

icant contours [1]. The initial framework was then extended to

multispectral images [9].

The aim of this paper is to introduce improvements of the

stochastic watershed and to compare them with the segmenta-

tions obtained with the deterministic WS for multispectral im-

ages.

The standard stochastic watershed starts from uniform ran-

dom point markers to flood the norm of a gradient, in order to ob-

tain associated contours to random markers. After repeating the

process a large number of times, a probability density function of

contours (pdf) is computed by the Parzen kernel method. In our

previous works, this pdf was segmented by hierarchies based on

extinction values (according to dynamics, surface and volume)

in order to select the most significant minima of the pdf. The

selected minima were used as the markers for the watershed [7].

In the case of multispectral images, a pdf is built for each chan-

nel of the image and the flooding function is the weighted sum

of the channels pdf. This function is called a weighted marginal

probability density function mpd f [9].

In this paper, we generate the pdf using the results of a

prior classification. First, we compute a spectral classification

of the multispectral image by unsupervised approaches such as

"k-means" or "clara" [11]. After filtering each class, we obtain

some seeds s used as markers to segment the flooding function.

This function is a pdf in the stochastic case, or a multivariate

gradient in the deterministic one [8].

The main contributions of this paper are the new algorithm

to build the pdf conditionally to the classification, and the seg-

mentation of the pdf with seeds (i.e. markers) obtained by the

classification. Finally, we propose a full treatment chain for mul-

tispectral images with a robust parameter: the number of classes

for the classification.

The method presented here can be applied in various multi-

spectral image fields: remote sensing, microscopy images, med-

ical images [10], thermal images, temporal series, multivariate

series, etc.

Multispectral image space (MIS) vs. factor
image space (FIS)

Multispectral images are multivariate discrete functions

with typically several tens or hundreds of spectral bands. In a

formal way, each pixel of a multispectral image is a vector with

values in wavelength, in time, or associated with any index j.

To each wavelength, time or index corresponds an image in two

dimensions called channel. In the sequel, we use only the term

of spectrum and spectral channel. The number of channels de-

pends on the nature of the specific problem under study (satellite

imaging, spectroscopic images, temporal series, etc.). Let

fλ :

{
E → T L

x → fλ (x) =
(

fλ1
(x), fλ2

(x), . . . , fλL
(x)

) (1)

be an hyperspectral image, where:

• E ⊂ R
2, T ⊂ R and T L = T ×T × . . .×T

• x = xi \ i ∈ {1,2, . . . ,P} is the spatial coordinates of a vector

pixel fλ (xi) (P is the pixels number of E)

• fλ j
\ j ∈ {1,2, . . . ,L} is a channel (L is the channels number)

• fλ j
(xi) is the value of vector pixel fλ (xi) on channel fλ j

.

Due to the redundancy of channels, a data reduction is usu-

ally performed using Factor Correspondence Analysis (FCA) [4].

We prefer a FCA in place of a Principal Component Analysis

(PCA), because image values are positive and the spectral chan-

nels can be considered as probability distributions. As for PCA,

from selected factorial FCA axes the image can be partially re-

constructed. The metric used in FCA is the chi-squared, which is

adapted to probability laws and normalized by channels weights.

FCA can be seen as a transformation going from image space to

factorial space. In factorial space, the coordinates of the pixels

vector, on each factorial axis, are called pixels factors. The pixels

factors can be considered as another multispectral image whose

channels correspond to factorial axes:

ζ :

{
T L

→ T K / K < L

fλ (x) → cf
α (x) =

(
cf

α1
(x), . . . ,cf

αK
(x)

) (2)
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A limited number K, with K < L, of factorial axes is usually

chosen. Therefore FCA can be seen as a projection of initial vec-

tor pixels in a factor space with a lower dimension. Moreover,

as it is shown below, FCA can be used for multispectral images

to reduce noise [6, 8]. Consequently, we have two spaces for

multivariate segmentation: the multispectral image space (MIS)

and the factor image space (FIS). Figure 1 gives an example of

a five bands satellite simulated image PLEIADES, acquired by

the CNES (Centre National d’Etudes Spatiales, the French space

agency) and provided by G. Flouzat [5], and its corresponding

FCA representation. Its channels are the following: fλ1
blue,

fλ2
green, fλ3

red, fλ4
near infrared and fλ5

panchromatic. The

panchromatic channel, initially of size 1460×1460 pixels with a

resolution of 0.70 meters, was resized to 365×365 pixels. There-

fore, the resolution is 2.80 meters in an image of 365× 365× 5

pixels. In order to represent a multispectral image in a synthetic

way, we have created a synthetic RGB image using channels fλ3

red, fλ2
green and fλ1

blue. Figure 1 shows FCA factor pixels cf
α

of image "Roujan".

fλ1
fλ2

fλ3

fλ4
fλ5

RGB
Figure 1. Channels of multispectral image fλ "Roujan" ( c©CNES): fλ1

blue, fλ2
green, fλ3

red, fλ4
near infra-red, fλ5

panchromatic, synthetic RGB

representation.

cf
α1

cf
α2

cf
α3

cf
α4

Figure 2. FCA factors pixels cf
α of image "Roujan" on axes 1, 2, 3 and 4

with respective inertias 84.1 %, 8.7 %, 6.2 %, 1 %.

Pre-processing and spectral classification
As shown by Benzécri in [4] and by Green et al. in [6],

some factor pixels on factor axes contain mainly noise, and oth-

ers signal information. In order to choose relevant axes con-

taining information (i.e. signal), we introduce a new method

based on a measurement of signal to noise ratio SNR. For each

factorial axis αk, the centered spatial covariance is computed

by a 2D FFT (Fast Fourier Transform) on the pixels factors:

gαk
(h) = E[cf

αk
(x)cf

αk
(x +h)], with cf

αk
(x) = cf

αk
(x)−E[cf

αk
(x)].

The covariance peak, at the origin, contains the sum of the sig-

nal variance and the noise variance of the image. Then, the signal

variance is estimated by the maximum (i.e. value at the origin) of

the covariance g after a morphological opening γ , with a structur-

ing element of size 3×3 pixels: Var(signal) = γgαk
(0). In fact,

one property of the morphological opening is to remove peaks on

images. The noise variance is given by the residue of the opening

of the covariance at the origin: Var(noise) = gαk
(0)− γgαk

(0)
(fig. 3). The signal to noise ratio is defined for a factor axis as:

SNRαk
=

Var(signal)
Var(noise)

=
γgαk

(0)
gαk

(0)− γgαk
(0)

(3)

gα1
(h) γgα1

(h)

gα2
(h) γgα2

(h)
Figure 3. 2D covariances for factor pixels cf

α1
and cf

α2
of image "Roujan"

before (left) and after opening (right).

By observation of the factor pixels and their signal to noise

ratios, which are higher for axes 1, cf
α1

, and 3, cf
α3

, than for axes

2, cf
α2

, and 4, cf
α4

, the axes 1 and 3 are retained.

In figure 4, we notice that axis 3, which is selected, has

a lower inertia than axis 2, which is rejected. Therefore, SNR

analysis makes possible to describe relevant signal, more than

inertia.

After the data reduction and the spectral filtering stage by

FCA, a spectral classification κ by clara [11] is performed on
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Figure 4. Inertia (%) and SNR for factor pixels of image "Roujan".
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the factor space. We have to stress that a correct classification,

used later for constructing the pdf, requires factor pixels with-

out noise. The classification algorithm uses a euclidian distance

which is coherent with the metric of the factor space [8]. The

unique parameter is the number of classes, which is chosen in or-

der to separate more the classes. Here, for this example, 3 classes

are retained (fig. 5).

RGB κ κ̂

Figure 5. Synthetic RGB image, classification κ in 3 classes in factor

space formed by cf
α1

and cf
α3

with clara and filtered classification κ̂ .

The classification κ is then filtered class by class, in order

to reduce their area. A closing by reconstruction after an ero-

sion by a structuring element (se) of size 5× 5 pixels, followed

by an erosion by a se of 3× 3 pixels are applied. The filtered

classification is noticed κ̂ .

Two reasons are available for a such filtering. First we pre-

vent random markers from falling on the boundary of a class.

In fact, during the pdf building process, in case of a leak on the

channel gradient, two regions could be aggregated by a marker

on the bounds of a class. The second reason is that the classes are

used as seeds (i.e. markers) for the segmentation of the pdf. If

all the image space E is completely full of seeds, the limits of the

segmented zones are the limits of the seeds. Then, the pdf is use-

less. Therefore, filtering classes introduces a necessary degree of

freedom for the watershed on the pdf.

Regionalized random balls markers
Regionalized random balls markers are used to build the

pdf. The novelty of the paper is to condition the markers by the

filtered classification κ̂ .

Given D = {Dl}, a partition of disjoint classes of the im-

age space E ⊂ R2. Each class Dl of the partition is composed

of connected components Cp: i.e. Dl = ∪pCp. Then the point

markers µ are drawn conditionally to the connected components

Cp of the filtered classification κ̂ . To do this,the following rejec-

tion method is used: the point markers are uniformly distributed.

If a point marker µ is inside a connected component Cp of min-

imum area S and not yet marked, then it is kept, otherwise it

is rejected. These point markers are called regionalized random

point markers.

Moreover to decrease the probability of the small, textured

and low contrasted contours regions, we use random balls as

markers. The centers of the balls are the regionalized random

point markers and the radii r are uniformly distributed between

0 and a maximum radius Rmax: U [1,Rmax]. Only the intersec-

tion between the ball B(µ,r) and the connected component Cp is

kept as marker. These balls are called regionalized random balls

markers.

The algorithm 1 sketches the process. We notice that N is

the number of markers to be drawn. The effective number of

implanted markers is less than N.

The marker image mrk(x) is the union of retained markers

B(µ,r)∩Cp.

Algorithm 1 Regionalized random balls markers

Given N the number of markers to be drawn, S and Rmax

for all centers µ between 1 and N do

if (Cp such as µ ∈ Cp is not marked) AND (area(Cp) ≥
S) then

r = U [1,Rmax]
keep B(µ,r)∩Cp as marker

indicate that Cp is marked

end if

end for

Probability density function
In the examples illustrating this paper, we use the weighted

marginal probability density function with regionalized random

balls mpd fballs on the image space MIS with 5 channels [9]. It

would also be possible to work in the factor space FIS with a re-

duced number of channels. We choose to work in MIS to show

that our method is not limited by the number of channels. Never-

theless, the factor space is useful for computing a correct classi-

fication used to generate the regionalized random balls markers.

In the sequel, in place of using uniform random markers as in

[9], regionalized random markers are thrown. The mpd fballs is

computed as follows:

• For the morphological gradient of each channel ρ( fλ j
),

j ∈ [1, . . . ,L], throw M realizations of N regionalized ran-

dom balls markers, i.e. the markers {mrk
j
m(x)} j=1...L

m=1...M ,

generating M × L realizations. Get the series of segmen-

tations, {sg
j
m(x)} j=1...L

m=1...M , by watershed associated to mor-

phological gradients of each channel ρ( fλ j
).

• Get the marginal pdf on each channel pd f j(x) =
1
M ∑

M
m=1 sg

j
m(x)∗Gσ , with Gσ a Gaussian convolution ker-

nel (σ = 3 pixels for contours of one pixel width).

• Obtain the weighted marginal pdf mpd fballs(x) =
∑

L
j=1 w j pd f j(x), with w j = 1/L, j ∈ [1, . . . ,L] in MIS and

w j equal to the inertia axes in FIS.

Some markers and their associated realizations of contours

are presented in figure 6. The pdf mpd fballs is shown in figure 7.

m = 1 m = 2 m = 3 m = 4 m = 5

Figure 6. A few realizations of regionalized random balls markers

{mrk
j
m(x)} j=1

m=1...5 (top) by the classification κ̂ and associated contours of wa-

tershed {sg
j
m(x)} j=1

m=1...5 (bottom).

Segmentation
For segmentation, we compare a deterministic and a

stochastic approach on multivariate images (fig. 7).

First step : For both cases, an unsupervised classification κ

(kmeans or "clara") is processed in factor space FIS and

filtered κ̂ .

Second step :
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• For the deterministic approach, a chi-squared metric

based gradient ρχ2

(fλ ) is computed in image space

MIS, as a function to flood [8].

• For the stochastic approach, a marginal probability

density function mpd fballs, with regionalized ran-

dom balls markers conditioned by the filtered clas-

sification κ̂ , is processed, in image space MIS, as a

function to flood [9].

Third step : In both cases, the flooding function is segmented

by a watershed (WS) using as sources of flooding the seeds

from the filtered classification κ̂ .

The results are images segmented by stochastic WS with

seeds from classification WSκ̂
sto.balls and deterministic WS with

seeds from classification WSκ̂
det .

Results
In figure 7, are given the results of segmentation by deter-

ministic and stochastic WS for image "Roujan" with seeds com-

ing from filtered classification κ̂ . We observe that the contours

are smoother and follows more the main limits of the regions

for the stochastic approach than for the deterministic one. The

parameters for the stochastic WS with seeds coming from the

classification W Sκ̂
sto.balls are:

• the number of classes for the classification κ: Q = 3 ;

• the maximum number of random balls markers: N = 50,

which corresponds to the same order of the number regions

in the image ;

• the number of realizations for each channel: M = 100, al-

ways the same ;

• the minimum area S = 10 pixels for connected classes Cp,

generally the same ;

• the maximum radius of the random balls Rmax = 30, gen-

erally the same.

In figure 8, for comparison with a segmentation based on a

prior number of regions, other images, similar to image "Rou-

jan", are segmented: "Roujan 0 2 " and "Roujan 1 9". As for

image "Roujan", factor axes cf
α1

and cf
α3

are kept. They present

both a higher SNR than the other axes. Inertias and SNR for fac-

tor axes of images "Roujan X X" are presented on the following

tables.

A classification "clara" is computed on the factor pixels of

these two axes. The mpd fballs are produced as explained for

image "Roujan".

Inertia for factor axes for images "Roujan X X"

Image cf
α1

cf
α2

cf
α3

cf
α4

"Roujan" 84.1 % 8.7 % 6.2 % 1 %

"Roujan 0 2" 75.6 % 13.7 % 9.2 % 1.5 %

"Roujan 1 9" 77.5 % 12.1 % 9 % 1.4 %

SNR for factor axes for images "Roujan X X"

Image cf
α1

cf
α2

cf
α3

cf
α4

"Roujan" 5.10 0.03 2.84 0.47

"Roujan 0 2" 2.66 0.01 2.53 0.32

"Roujan 1 9" 3.15 0 2.90 0.51

To segment these mpd fballs two methods are compared:

κ̂

ρχ2

(fλ ) WSκ̂
det zoom W Sκ̂

det

mpd fballs WSκ̂
sto.balls zoom WSκ̂

sto.balls

Figure 7. Filtered classification κ̂ , deterministic approach W Sκ̂
det on

Chi-squared metric based gradient ρχ2
(fλ ) (top) and stochastic approach

W Sκ̂
sto.balls on mpd fballs (bottom) on image "Roujan". In both cases, the seeds

come from κ̂ . For visualization, and for complete segmented images the

contours are dilated by a se of size 3×3 pixels.

• a WS with seeds coming from the filtered classification

W Sκ̂
sto.balls ;

• a hierarchical WS based on extinction values, which allows

to select the minima according to a morphological criterion

of volume W Svol
sto.balls

.

In figure 8, we notice that the number of regions, resulting

from the segmentation, strongly depends on the image, whereas

the number of classes is the same for similar images. In fact, the

number of regions for volumic WS, W Svol
sto.balls

, must be chosen

according to the considered image, and cannot be fixed "a priori"

(50 here). The number of regions depends on the size and the

complexity of the image, while the number of classes depends

on the spectral content. Consequently, it is more relevant to use a

WS with seeds coming from the classification W Sκ̂
sto.balls. More-

over only one parameter is needed for WS with seeds W Sκ̂
sto.balls:

the number of classes in the classification. This parameter is the

same for similar images and can be chosen more easily than the

number of regions. Moreover, the number of classes produces a

more robust segmentation than the number of regions.

Some other results are presented on image "Port de Bouc",

in figure 9. Two factor axes are retained in FIS: cf
α1

and cf
α2

of

respective inertias: 60.1 % and 23.4 % and of respective SNR:

18.7 and 3.16. The parameters for the stochastic WS are: Q = 7

classes for the classification κ , N = 100 random balls at maxi-

mum, M = 100 realizations, a minimum area of S = 10 pixels for

the connected classes Cp and a maximum radius of Rmax = 30

pixel for random balls. We notice that contours are more regular

for stochastic WS than for deterministic WS.

One of the main artefacts of deterministic watershed is that

small regions strongly depend on the position of the markers, or

on the volume, i.e. the integral of the gray levels of the catch-
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κ̂ WSκ̂
sto.balls WSvol

sto.balls

140 regions 50 regions

"Roujan"

162 regions 50 regions

"Roujan 0 2"

142 regions 50 regions

"Roujan 1 9"
Figure 8. Comparison between segmentations of mpd fballs by stochastic

WS with a prior given number of regions R = 50 (W Svol
sto.balls) or with seeds

coming from the filtered classification W Sκ̂
sto.balls. The results are given for

images: "Roujan", "Roujan 0 2", "Roujan 1 9".

ment basin, associated to their minima. In fact, there are two

kinds of contours associated to the watershed of a deterministic

gradient such as ρχ2

(fλ ): 1st order contours, which correspond

to significant regions and which are relatively independent from

markers; and 2nd order contours, associated to "small", "low"

contrasted or textured regions, which depend strongly on the lo-

cation of markers. Stochastic watershed aims at enhancing the

1st order contours from a sampling effect, to improve the result-

ing segmentations.

Therefore even with good markers, obtained from classi-

fication for multispectral images, the contours of the stochastic

WS are more regular than for deterministic WS.

Moreover, we have compared the stochastic WS with

regionalized random balls markers with a volume criterion

W Svol
sto.balls

, presented in this paper, to the stochastic WS with

uniform random points markers with a volume criterion W Svol
sto ,

presented in [9]. The number of regions is R = 8 (fig. 10). We

notice that W Svol
sto.balls

concentrates more on main contours of

the image than W Svol
sto especially for the part concerning the sea.

Therefore, stochastic WS with regionalized random balls mark-

ers W Svol
sto.balls

improves the result of stochastic WS with uniform

random point markers W Svol
sto .

Conclusions and perspectives
In this paper we have introduced a new way of computing

regionalized random markers introducing spectral information in

the weighted marginal probability density function mpd fballs.

κ κ̂

ρχ2

(fλ ) WSκ̂
det zoom W Sκ̂

det

mpd fballs WSκ̂
sto.balls zoom WSκ̂

sto.balls

Figure 9. Filtered classification κ̂ , deterministic approach W Sκ̂
det on

Chi-squared metric based gradient ρχ2
(fλ ) (top) and stochastic approach

W Sκ̂
sto.balls on mpd fballs (bottom) on image "Port de Bouc". In both cases, the

seeds come from κ̂ . For visualization, and for complete segmented images

the contours are dilated by a se of size 3×3 pixels.

mpd funi f .points WSvol
sto

mpd fballs WSvol
sto.balls

Figure 10. Comparison between stochastic WS with regionalized random

balls markers with a volume criterion WSvol
sto.balls to the stochastic WS with

uniform random points markers with a volume criterion WSvol
sto . There are

R = 8 regions. For visualization, and for complete segmented images the

contours are dilated by a se of size 3×3 pixels.

Therefore, mpd fballs contains now spectral and spatial informa-

tion. Usually the main difficulty is the choice of the number of

regions for the segmentation. Here, we have presented a com-

plete treatment chain for segmenting multispectral images with a

major and robust parameter: the number of classes of the classi-

fication. We have shown that the number of classes for the clas-

sification is more robust than the number of regions for the seg-

mentation. Moreover, even with good markers, obtained by clas-

sification for multispectral images, the contours of the final seg-

mentation are smoother for the stochastic WS with seeds coming
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Figure 11. Complete flowchart for classification-driven stochastic WS with

regionalized random balls markers W Sκ̂
sto.balls.

from the classification, than for the deterministic WS with the

same seeds.

Finally, we have introduced a general methodology for seg-

menting multispectral images. We are thinking on applying on

different fields are numerous: medical images [10], microscopy

images, thermal images, temporal series, multivariate series, etc.
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