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Abstract
Challenges in designing non-linear color and multi-spectral

image filters can be addressed by known approaches from the
field of multi-objective optimization. In particular Pareto-set the-
ory is considered to be feasible. In this paper we explore the
impact of so-called indicator functions, which are used to repre-
sent all points on a Pareto front. Thereby, we focus on the most
common indicator function that is the Hypervolume. It is used to
derive an alternative approach to color morphology. We present
the conceptional base for the morphological operators, a study
of their properties and show their impact in real-world applica-
tions, i.e. secure document analysis.

Introduction
Color-image processing is of essential importance in order

to increase robustness, versatility and reliability of technical vi-
sion systems. Potential application of color-image processing are
for example object recognition, image understanding, retrieval
and compression. Since modern computing equipments with sig-
nificant improvements of its calculation and storing capabilities
are becoming available far and wide, color-image processing is
becoming a kind of state-of-the-art. However, challenges in de-
signing sophisticated color-image processing filters are still the

I. Multi-variate nature of color data that complicates the ex-
tension of some gray-scale image filters to the color do-
main, and

II. Dual nature of human color-perception sensitiveness, that
is being highly sensitive to smallest “color artifacts,” and
being highly insensitive for luminescence variations within
images, e.g. under varying lightning conditions at once.

In order to address these challenges we investigated ap-
proaches, which have been developed in the past for the study of
(continuous) multi-objective optimization problems. We found
out that concepts of Pareto dominance and related Pareto-set-
based means can also be applied in the formulation of image-
processing operators for multi-variate data. In this paper we dis-
cuss a new concept for handling the multi-variate color-image
data and study the Hypervolume measure for defining an alterna-
tive approach to color morphology.

The reminder of this paper is organized as follows: the first
section revisits mathematical color morphology briefly, while the
next section deals with the fundamentals of Pareto-set theory that
are needed for the definition of the hypervolume, which itself will
be more detailed afterwards. The following section then gives the
options of using the hypervolume as a base for the specification
of morphological operation. The paper ends with a conclusion
section.

Mathematical Color Morphology
Morphological filtering is an non-linear image-to-image

transformation by means of a structural element that acts like

a probe sensitive for structural information. Mathematical Mor-
phology in general is based on set theory [5]. Its core definitions
are fixed for binary and gray-scale images. Color is more than a
simply “add-on” to gray-scale images, as exemplified by human
perception abilities. In addition, there is no unique way to ex-
tend the concepts of gray-scale morphology to color images. The
fundamental lack of a “natural sort order” of multi-variate data
and the numerical differences due to the choice of different color
spaces make it hard or even impossible to define something like
THE Color Morphology. Different viewpoints have led so far to
the proposal of a number of useful operations for the processing
of color images. Among these viewpoints we can find the linear
weighted, or scalar, approaches, where a multi-variate channel-
intensitiy vector is mapped onto a point by a scalar function that
is monotone in each argument.

In this paper, we are studying an intensity-based Color Mor-
phology, with its main difference to other Color Morphologies
being the generation of a gray-scale image that cannot be the
result of a morphological operation on a gray-scaled version of
the color image itself. The formal techniques for achieving this
goal come from the field of multi-objective optimization and its
related concept of Pareto dominance.

A simple example is the generation of a gray-scale image
from a color image, where each pixel’s gray-scale represents
the number of Pareto-dominating points in the neighborhood of
this pixel. Practically this comes out to be an edge operator.
However, recent interest has been grown on the use of the so-
called Hypervolume measure in order to access quality in multi-
objective optimization. Given a set of points, the Hypervolume
is defined as the Lebesque measure of the set of all points that
are Pareto-dominated by at least one of the given points. By con-
sidering the Hypervolume in the color-image domain, it can be
easily seen that this Hypervolume corresponds to another kind
of Color Morphology, were each pixel in the filtered image rep-
resents the Hypervolume of its set of neighbours in the original
color image. In the following, some properties of the Hypervol-
ume, as used as an image-processing filter will be derived, and
some potential applications of this approach to Color Morphol-
ogy will be shown.

Pareto-set theory
The notion of Pareto efficiency originally stems from eco-

nomics. In the late 19th century, Vilfredo Pareto established a
model for the economic stability of a society, where an economy
is in a state where one can only become more rich if someone
else becomes more poor. In modern terms, given a feasible set
of multi-variate values (vectors, points, objectives, decision cri-
teria), each of its elements is considered to be Pareto-efficient,
if for any other element having a larger component there is al-
ways another component that is smaller. This notion gave raise
to the definition of a Pareto-dominance relation. For two vectors
a = (ai) and b = (bi) from Rn it is said that a Pareto-dominates
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b if and only if

a >D b ↔∀i(ai ≥ bi)∧∃ j(a j > b j) (1)

where i, j = 1,2, · · · ,n. This definition is accompanied by the
related definition for minimum dominance, where the “>” is re-
placed by “<” and “≥” is replaced by “≤.” To avoid confusion,
we will refer to the former one also as maximum Pareto domi-
nance, and by minimum Pareto dominance to the latter one.

Note that in general not a >D a. There is the extension to
the so-called weak dominance, or a ≥D b, if and only if either
a = b or a >D b. Also, the (weak) Pareto dominance is transitive,
i.e. from a >D b and b >D c follows a >D c, but is not given
a complete ordering relation, as for two vectors a and b neither
a >D b nor b >D a may hold (example are the two vectors (1,2)
and (2,1)).

Given a set of vectors V = vi, the term (maxi-
mum / minimum) Pareto-set refers to its subsets of all elements
that are not (maximum / minimum) Pareto-dominated by any
other element of the set.

In general, a Pareto-set may give raise to a number of quan-
titative measurements. By indicating with Pmax/min(S) the max-
imum / minimum Pareto-set of the set S, and by |M| the number
of elements of an arbitrary set M, the following measures can be
introduced:

• The percentage of non-maximum dominated elements:
rmax = |Pmax(S)|/|S|.

• The percentage of non-minimum dominated elements:
rmin = |Pmin(S)/|S|.

• The absolute difference between rmax and rmin: rδ =
|rmax − rmin|.

• For any element s ∈ S, the number npmax/pmin(s,S) of ele-
ments of S that maximum / minimum-Pareto dominate s.

• For any element s ∈ S, the number namax/amin(s,S) of ele-
ments of S that are maximum / minimum Pareto-dominated
by s1.

• The largest and smallest values of npmax/pmin(s,S) and
namax/amin(s,S) among all s ∈ S.

The list could be easily continued.

The Pareto-dominance relation allows for an ordering of a
set S of vectors by assigning rank values to each element. This is
the so-called non-dominated sorting, and further operations can
be based on this ranking. All elements of P(S) get rank 1 as-
signed, all elements of P(S−P(S)) rank 2 and so on, until the
remaining set is empty. The disadvantage of this way of order-
ing is that elements that are different, but of the same rank are
indistinguishable, and this ranking cannot be further refined.

Ranking in the multi-variate domain is not restricted to the
Pareto-dominance relation. A less rough way of ordering is the
so-called lexmin ordering. Here, in case of maximum preference,
the element with a smaller largest component would come before
an element with a larger largest component. If both element have
the same largest component, then comparison is based on the
second-largest component, if they are equal on the third-largest
and so on. While the Pareto non-dominated sorting usually as-
signs rank 1 to more than one element, the lexmin ordering only
selects one element as firstly ranked (and all that are equal to it,
but only these).

Both strategies can be combined, since the first element in
the lexmin sorting is also an element of the Pareto-set. So, the

1The “a” and “p” stand for active and passive dominance in the rela-
tion a >D b, i.e. the fact that a dominates b (active) or b is dominated by
a (passive).

lexmin can be used to sort the elements of the non-dominated
sorting of the same rank. However, several other secondary rank-
ing assignments have been proposed in the literature, especially
methods related to the NSGA-II algorithm [4], an evolutionary
algorithm for multi-objective optimization [1].

Each of the proposed methods can be used for the specifi-
cation of an image-processing operation on color images. If the
image is provided in an intensity-based (technical) color space
like RGB, then a pixel is a mapping from the image coordinates
(x,y) to a tupel (r,g,b), where r indicates its red color compo-
nent, b its blue component and g its green component. Usually,
r,g and b are taken from the integers in (0, · · · ,255), and the pixel
coordinates are integers taken from a rectangularly bounded do-
main (0, · · · ,(width−1))× (0, · · · ,(height −1)).

A masked operator is an image processing operation, which
is based on a topology (or neighborhood system) that is assigned
to the image pixel coordinate domain. The mask M of a masked
operator assigns a subset of the image pixel coordinate domain to
each pixel. In the most common form, these are the direct neigh-
bours of the pixel, but other assignments are feasible as well.
The mask is also sometimes referred to as structuring element,
especially in the discipline of Mathematical Morphology.

A number of masked operators for color images based on
Pareto-set analysis can be easily defined, using any of the oper-
ations listed in the beginning of this section. Figure 1 gives a
few examples for such operations. It is notable that the operators
based on the number of dominating neighbours appear to work
as edge detectors in the image.

(a) (b)

(c) (d)

Figure 1. Pareto-set measurements as masked image operators in the

8-neighborhood (8NB): (a) original image; (b) number of points in 8NB dom-

inating central point (CP); (c) number of points in 8NB dominated by CP; (d)

size of Pareto-set in 8NB.

Hypervolume and its properties
Recently, and in relation to the design of heuristic multi-

objective optimization algorithms, interest has grown in the so-
called Hypervolume. We can find evolutionary multi-objective
optimization algorithms employing the concept of the Hypervol-
ume [6, 2], as well as multi-objective counterparts of the simu-
lated annealing algorithm [3].

The Hypervolume is defined as follows: given a set V =
vi of N vectors from a bounded domain in Rn (the feasible
space), the Hypervolume is the Lebesque measure of all vectors
(i.e. points in the feasible space) that are Pareto-dominated by at
least one of the vectors in V .

If we assume for example the feasible space to have a lower
bound of 0 for all components, and target for maximization, than
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each vector v (or point) in R+
n dominates all points within the

hyper-cube having v as its outermost corner. The Hypervolume
then is the union set of all these hyper-cubes for all vectors in V
(see fig. 2).

x y

z

(1,1,3)

(1,3,1)
(3,1,1)

(2,2,2)

Figure 2. Example for the hypervolume enclosed by the points

(1,1,3),(1,3,1),(3,1,1) and (2,2,2). The union of the four cubes has a vol-

ume of 11.

Hypervolume usage as image-processing
operator

Preliminaries
In gray-scale image processing, an operator is considered to

be a dilation if it commutes with the supremum. A similar spec-
ification can be given for color dilation, by using the concept
of Pareto-dominance. Then, any operation that commutes with
the Pareto-set set operator (i.e. the mapping of a set S to P(S))
is considered a color dilation. Practically, this has usually been
seen as the provision of a selection procedure from the Pareto-set
of a color pixels’ neighbours (if seen them as three-dimensional
vectors (r,g,b)). A simple example is to use as color value at po-
sition (x,y) in the processed image the color value of all neigh-
bours of (x,y) (including (x,y)) in the processing image with the
maximum sum r +g+b (or one of them if there are more).

Since this will always give a single color value vector, the
Pareto-set is composed of this maximum color value, and since
the used scalar function is monotone, the operation always com-
mutes with the operation of taking the Pareto-set. However, it
has not been considered so far that the operation could also map
into the gray-scale domain. Considering the Hypervolume, it is
obvious that its value does not change under the addition of dom-
inated points. So, it can be seen as an alternative way of speci-
fying a morphological operation. Since we may consider maxi-
mization or minimization, and the Hypervolume of the union and
section, we find the following four Hypervolume-related mor-
phological operators:

1. maximum Hypervolume of the union of the vectors domi-
nated by the pi, and divided by g3

max
2. maximum Hypervolume of the section of the vectors dom-

inated by the pi, and divided by g3
max

3. minimum Hypervolume of the union of the vectors domi-
nated by the pi, and divided by g3

max
4. minimum Hypervolume of the section of the vectors domi-

nated by the pi, and divided by g3
max

and as a first composition the six pairwise absolute differences
between these four operations. Examples for all these operations
are shown in the figures 3 and 42.

2Note that in case of minimum union/section, a following inversion

1

2

3
4

Figure 3. Application of the four hypervolume methods to a color image:

1 maximum union, 2 minimum union, 3 maximum section and 4 minimum

section hypervolume.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Pixel-wise absolute differences between the gray-values of pairs

of hypervolume measures: (a) maximum union and minimum union, (b)

maximum union and maximum section, (c) maximum union and minimum

section, (d) minimum union and maximum section, (e) minimum union and

minimum section, and (f) maximum section and minimum section.

Potential applications
As in the binary or gray-scale morphology, starting from

the basic operations dilation and erosion, a number of other op-
erators can be defined (opening, closing, thickening, thinning,
top-hat transform etc.). This can also be done for the proposed
Hypervolume based morphology. Here we are considering the
use of such operator for the processing of the scan image of a
security document. Figure 5 shows a part of the scan of an ID-
card, where some security features are only visible in the UV
light. However, UV scan might be to expensive for e.g. small,
mobile devices. The right half shows, how the (absolute) dif-
ference image between maximum union hypervolume and maxi-
mum section hypervolume helps to visualize the hidden security
features even from a camera image in the visible light spectrum.

of the result image would give a specification, which is more consistent
with a gray-value image erosion.
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The small activations by the small eagle patterns in the blue chan-
nel lead to a more or less uniform representation of these areas
after the hypervolume processing. With such an approach, for
example, it becomes possible to check hidden security features
that are difficult to reproduce in low, medium effort counterfeit
passports.

Figure 5. The difference image between maximum union and maximum

section hypervolume applied to a scan of a security document visualizes

features (the small eagle symbols) that can usually only be seen under UV

light.

At this point we want to emphasis that the approach to color
morphology presented in this paper is able to enhance structural
information that varies in a very little color range only.

Conclusion
In this paper, we have discussed the opportunities for taking

analytical methods of multi-objective optimization to the domain
of color image processing. The multi-variate nature of color im-
ages allows for a more or less direct translation of Pareto-set the-
ory based measurements to image processing operators. Such
operators can account for the local dominance relations among
the pixel in the neighborhood of a pixel. Counting dominance
relations is one easy way to specify new operators, and some of
them come out to be edge operators. One of the more interesting
recent tools of multi-objective optimization analysis is the hy-
pervolume, which stands for the Lebesque measure of all points
dominated by a given set of points, and is an example for the
so-called indicator functions. The hypervolume, if used as an
image processing operator, appears to be a morphological opera-
tion, since it is commuting with taking the supremum (infimum),
meaning the taking of the Pareto-set of a set of points. In contrary
to other color morphologies, which now can be characterized as
“selection-based”, this morphology is intensity-based. The result
of the application is a gray-value image, and it was exemplified
that such an approach can be much more separatively (due to the
higher dimensionality) for small intensity fluctuations in local
pixel neighborhood.
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