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Abstract
Unlike most color classification methods, which consist in

partitioning the image according to the pixels color attributes

exclusively, spatio-colorimetric techniques bring some spatial

information directly among the data to classify. However, they

usually involve some heavy data structures and a large amount

of trichromatic data.

To answer this issue, this article proposes a color spatio-

classification method performing two successive stages. First of

all, the number of colors is lowered through an analysis of the

connectedness degrees on the three marginal components inde-

pendently. Since the number of colors is significantly reduced, it

becomes reasonable, in a complexity point of view, to analyze the

vectorial connectedness degrees of the trichromatic intervals. Se-

veral experimental results will be shown on different images and

the method parameters will be discussed.

Keywords : color connectedness degree, unsupervised spatio-

colorimetric classification.

Introduction
The color classification consists in partitioning the image

exclusively upon the pixels color attributes, without any spatial

information. Therefore, the criteria involved in the formal de-

finition of the segmentation [9] are not respected, in particular

concerning the connectedness. In order to answer to the segmen-

tation problem, the classification is usually followed by a labe-

ling procedure.

Using color classification to achieve a color partition as-

sume either :

– that the pixels of a same region have similar colorimetric

components, which cluster in the 3D color space. These

methods are called clustering ;

– or that the color distribution in the color histogram show

several modes of high density corresponding to pixels

classes.

In a different way, Markovian processes can be used to ite-

ratively maximize the membership probabilities of the pixels to a

class according to their neighborhood in the image. The use of a

maximization procedure is usually time-expensive, in particular

for color.

In spatio-colorimetric methods, spatial or structural infor-

mation is introduced upstream. These methods can be viewed as

an improvement of color classification by use of spatial informa-

tion extracted from the images structure.

For example, Ferri et al. [3] introduce shape and surface in-

formation in the data. They use a vector which directly include

the components of the four neighbors pixels around the pixel to

be treated. In a different way, neural networks strategies [6] can

help favoring the assignation of adjacent pixels to the same clus-

ter while avoiding the classification of one pixel to several clus-

ters. Campadelli et al. [1] have extended this approach to color

images. Let us also notice that the geometrical information can

be introduced in fuzzy classification systems [8].

The spatio-colorimetric methods usually involve heavy data

structures. As an example, the computation of 3D histograms re-

quires a large memory (23n bins for an image coded on n bits),

what explains that few techniques propose to analyze them. The

pyramid of color connectedness degrees [5] provides a multi-

scale analysis by computing a connectedness degree based on the

cooccurrence probabilities for all possible color intervals in a bi-

chromatic image. From a similar principle, Cheng et al. [2] define

the homogram which considers a fuzzy homogeneity vector in-

volving each pixel and its 8 neighbors. The classes are extracted

through successive thresholdings of this data structure. Recently,

a segmentation procedure based on spatial color compactness de-

gree [7] has been proposed to get a bijective one-to-one relation-

ship between color clusters and regions.

Our classification method is based on the connectedness de-

gree defined by [5], which has been extended to color in [4].

Unlike this latter technique, our procedure does not involve any

heavy 3D data structures, while carrying out a vectorial unsu-

pervised classification. First, the number of colors is reduced by

analyzing successively the connectedness degree of each color

component, in a multi-scale approach. Once the distinguishable

colors have been extracted, a second step computes all the pos-

sible combinations of color components (all of them do not ne-

cessarily occur in the image) and analyzes the trichromatic space

in order to define the meaningful 3D color intervals.

This article is structured as follows. The first section focuses

on the definition of the connectedness degree. Then, our proce-

dure is detailed in the second section. To finish, some experimen-

tal results on the Kodak color images data base are reported in the

third section.

The connectedness degree
Let us consider a trichromatic image of components ci =

(c1,c2,c3).
For each image channel histogram, we define the monochro-

matic color intervals I(ci,w) = [ci−w,ci +w] of size 2w+1 cen-

tered on each value ci.

The first order probability P1(I(ci,w)) is the probability that

a pixel of color a belongs to the interval I(ci,w). It is computed

as the sum of the first order probabilities P1(a) of the components

a belonging to the considered interval :

P1(I(ci,w)) = ∑
a∈I(ci,w)

P1(a) (1)

We define the co-occurrence probability of two colors a,b as

Pcc(a,b) =
1

8
∑

a∈N (b)
Poc(a,b) (2)
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where Poc(a,b) is the probability that a and b are the colors

of two neighbor pixels in the sense of 8-connectedness, the

neighborhood being noted as N . The second order probability

P2(I(ci,w)) of the color interval I(ci,w) is computed as the sum

of the co-occurrence probabilities of all color couples (a,b) be-

longing to I(ci,w).

P2(I(ci,w)) = ∑
a∈I(ci,w)

∑
b∈I(ci,w)

Pcc(a,b) (3)

Therefore, the connectedness degree [5] of a color interval

D(I(ci,w)) is given as :

D(I(ci,w)) =
P2(I(ci,w)
P1(I(ci,w))

(4)

This degree is assumed to be maximal when the interval I(ci,w)
corresponds to one or several connected components in the

image, i.e to a meaningful class in the sense of connectedness. In

the seminal work [5], the connexity degree is analyzed through

a multi-level data structure. The characteristics of the most rele-

vant intensity classes are computed by extracting specific signa-

tures in this representation. The extension to color has been pu-

blished in [4], where a multi-level pyramid of connexity is com-

puted for each bichromatic histogram. Three pyramids are then

necessary to extract each meaningful color interval, which is not

time-effective.

In order to reduce those limitations, our method operates

through two stages : first of all, a marginal classification ; se-

condly, a vectorial classification carried out on a reduced amount

of data.

The procedure

The flowchart of the algorithm is sketched on Fig. 1. Our proce-

dure first reduces the number of distinguishable monochromatic

colors for each color component ci, by analyzing the monochro-

matic connectedness degrees separately on each color channel.

The coordinates are then combined together in order to define

the new set of colors. Once the number of colors have been redu-

ced, the connectedness degree of the trichromatic intervals can be

reasonably computed. This stage outputs the 3D color intervals

which are the most relevant in the image. Of course, an additio-

nal stage can consist in labeling the resulting image in order to

output a segmentation, where the smallest regions, usually asso-

ciated to noise, can be removed if necessary.

1. First stage : marginal classification

1.1 Analysis of the monochromatic connectedness degree

First, an unsupervised classification is achieved indepen-

dently on each color component ci, by searching for local

maxima of connectedness degree. For increasing values of

w, more precisely from 1 to wmax, the connectedness degree

D(I(ci,w)) is computed for each interval I(ci,w). When the

connectness degree D(I(ci,w + 1)) at a level w + 1 becomes lo-

wer than the degree D(I(ci,w)) at the previous level then we can

reasonably assume that the color interval I(ci,w) is a local maxi-

mum of connectedness. The corresponding size wi is then given

as :

wi = {w/D(I(ci,w+1)) < D(I(ci,w)),w < wmax}

FIG. 1. Flowchart of the procedure.

Therefore, the resulting interval Ii = I(ci,wi) = [ci−wi,ci +
wi] of connectedness degree D(Ii) is likely to correspond to the

color range of a set of connected components in the image. As

soon as this maximum is reached, the procedure is stopped for

the actual color component ci, and the corresponding color in-

terval and degree are saved. The procedure continue since all the

maxima D(Ii) for each ci have been computed.

At that stage, a reasonably low value of wmax is required in

order to avoid the appearance of two large clusters, leading to

an over-clustering. This parameter value will be discussed in the

experiments.

Fig. 2 illustrates this stage of the algorithm. Fig. 2(a) shows

the values D(Ii) (in gray levels) with respect to the color com-

ponent ci and the size of interval w. The white corresponds to a

high value, and the black corresponds to zero. For each bin ci,

the algorithm proceeds from the bottom to the top (increasing w)

and stops when a local maximum (in white) has been reached or

when w = wmax. Fig. 2(b) sketches in red points the local maxima

finally extracted.

Once the intervals have been extracted separately on each

image channel, they have to be combined in order to get a

reduced number of vectorial values.

1.2. Reduction and combination of the colors

At that stage, each monochromatic interval Ii have inherited

three values : the central color component ci, the length wi and

the degree D(Ii).

a) Reduction of the monochromatic components
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FIG. 2. First reduction of the amount of colors. (a) Monochromatic connec-

tedness degree. (b) Detection of the local maxima.

These intervals are sorted in decreasing values of degree, in

order to to be processed from the most relevant one (probably

associated to some meaningful regions in the image) up to the

least relevant one (probably associated to noise). In Fig. 3, the

interval Ia = [a−wa,a+wa] is assumed to be more relevant than

Ib and Ic.

FIG. 3. Intervals are sorted in decreasing order of connectedness degrees.

Successively, each color component belonging to the inter-

val Ii inherits the color of its centroid ci, the most relevant interval

being analyzed first. In Fig. 3, Ia is processed before Ib and Ic. Of

course, since the color intervals of two contiguous intervals can

overlap, a color component previously labeled in a more relevant

interval can not be changed by a less relevant interval. In Fig. 3,

if color d ∈ Ia and d ∈ Ib, d will get the value a.

At that stage, the number of colors is reduced independently

on each channel. They have to be combined together in order to

define the new vectorial values.

b) Combination and computation of the vectorial values

The marginal components are combined together in order to

extract all the possible vectorial values. Each color combination

cccn, for n = 1..N gets the color value ccc(n) = (c1(n),c2(n),c3(n))
and the sizes of the corresponding marginal intervals.

2. Second stage : vectorial classification

2.1. Analysis of the trichromatic connectedness degrees

The second stage of the method analyzes the colors cccn in a

similar fashion to the first stage of the algorithm, except that 3D

intervals are now considered.

a) Connectedness degree of colors

Let us define a cubic color interval III(cccn,d) in the color

space, centered around the color ccc(n) and of size (2d + 1,2d +
1,2d +1) :

III(cccn,d) = ([c1(n)−d,c1(n)+d], (5)

[c2(n)−d,c2(n)+d],

[c3(n)−d,c3(n)+d]) for n = 1..N

A spherical interval around the central color cccn of the in-

terval should allow an isotropic distribution of the distances to

the centroid color. On the other hand, the use of cubic intervals

ensure a total and straightforward partition of the RGB cube.

The first order probabilities P1(III(cccn,d)) of the colors inter-

vals III(cccn,d) are expressed as :

P1(III(cccn,d)) = ∑
aaa∈III(cccn,d)

P1(aaa) (6)

where P1(aaa) is the occurrence probability of the color aaa.

The second order probabilities P2(III(cccn,d)) of the colors in-

tervals III(cccn,d) are computed as :

P2(III(cccn,d)) = ∑
aaa∈III(cccn,d)

∑
bbb∈III(cccn,d)

Pcc(aaa,bbb) (7)

where the co-occurrence probabilities Pcc(aaa,bbb) of two colors aaa

and bbb are computed as :

Pcc(aaa,bbb) =
1

8
∑

aaa∈N (bbb)
Poc(aaa,bbb) (8)

considering the 8-connexity and a neighborhood N around bbb.

Finally, the connectedness degree D(III(cccn,d)) of the inter-

val III(cccn,d) is defined as :

D(III(cccn,d)) =
P2(III(cccn,d))
P1(III(cccn,d))

(9)

b) Analysis of the connectedness degrees of colors

The analysis of the connectedness degrees is similar to the

analysis carried out in the first stage of the procedure. The de-

grees are analyzed in a similar structure as Fig. 2, but with abs-

cissa cccn and ordinates d.

For each color cccn, increasing sizes of cubic intervals d = 1 to

dmax are successively considered. The optimal color interval size
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dn associated to the color cccn is obtained when the connectedness

degree reaches the first local maximum :

dn = {d/D(III(cccn,(d +1))) < D(III(cccn,d)),d ≤ dmax}

The procedure stops when the values dn has been computed for

all the colors cccn.

Each outputted color interval IIIn = III(cccn,dn) inherits three

values : the centroid color cccn, the size of the interval dn and the

connectedness degree D(IIIn).

2.2 Final classification

Similarly to the stage 1, the colors belonging to an inter-

val IIIn successively gets the centroid color value of this interval,

i.e [c1(n),c2(n),c3(n)]. Beforehand, the colors cccn are sorted in

the decreasing order of connectedness degree D(IIIn), in order to

cluster the colors from the most relevant color interval to the less

relevant one. This stage is illustrated on Fig. 4. Interval IIIa will

be classified before IIIb and IIIc. Therefore if a color ccc is clustered

in IIIa, it will not be treated anymore.

FIG. 4. 3D intervals are sorted in decreasing order of connectedness de-

grees.

Results
In this section, the classification proposed in this article is

analyzed qualitatively on the images Window, Parrots and Caps

of Fig. 6. These images belong to the Kodak image data base

available on the web 1. In the experiments, their size has been

reduced twice.

First of all, let us consider the RGB representation of the

images. In the first stage of the algorithm, the monochromatic

histograms and the associated first order probabilities P1(ci) are

computed. As an example, the first row of Fig. 5 sketches the

three monochromatic R, G and B histograms of the image Win-

dow. Second, we compute the local maxima of monochromatic

connectedness degrees D(Ii) for each color component (see the

bottom row of Fig. 5). Each maximum corresponds to a given

relevant monochromatic interval Ii.

In these experiments, the parameters used for maximum

sizes of intervals are fixed around ten percent of the image dy-

namic, i.e wmax = dmax = 25. We can notice on Fig. 5 that a

high probability P1(ci) usually involves a high D(Ii) value. In-

deed, the peaks in the histograms mostly correspond to a set of

connected components in the image. Inversely, a high D(Ii) does

not always correspond to a mode in the histogram. Indeed, this

degree stresses the amount of connectedness independently from

the amount of pixels. When no local maximum is extracted, the

final size is wmax or 0 depending on the connectedness degree.

1http ://r0k.us/graphics/kodak/index.html

FIG. 5. Monochromatic histograms P1(ci) and connectedness degrees

D(Ii) computed on image Window in the RGB space.

At that stage, the number of colors of the image Window is

reduced to 576 trichromatic values cccn after combination. Indeed,

n1 = 9 classes have been extracted on R, n2 = 8 on G, n3 = 8

on B. The resulting classification image is shown on Fig. 8(a).

On image Parrots, n1 = n2 = 9 and n3 = 8, leading to the com-

bination of 648 possible colors cccn. This result is shown on Fig.

8(b).

The trichromatic connectedness degree is then analyzed on

the components cccn. As an example, the first row of Fig. 7(b)
shows the local maxima of the trichromatic connectedness de-

grees D(IIIn), computed on Window. The corresponding sizes dn

are shown on the second row. Note that no result appears for a

few values cccn. Indeed, these colors have been computed by com-

bination at the stage 1, but they do not occur in the image. At that

final stage, 27 classes have been extracted on Window and 35

classes on Parrots. Fig. 8(c) and 8(d) (second row) show respec-

tively the classification results obtained on these two images. Be-

sides, Fig. 8(e) and 8(f) (third row) show the contours (in white)

of the connected components. Note that the classification proce-

dure leads to the appearance of wide spatial homogeneities in the

image.

The procedure has been executed on the whole Kodak image

data base (23 images), with different values wmax and dmax, in

order to evaluate the impact of these parameters on the classifi-

cation results. For comparison criteria, we consider the number

of colors computed at the first and second stage, respectively Nb

1 and Nb 2, and the execution times in seconds. The average,

minimum and maximum values of these comparison criteria are

collected in Table 1. Concerning the computation times, they are

indicated for comparison purpose. No specific algorithmic op-

timization has been carried out and the computer used has one

processor Intel(R) T2300 1.66 Ghz with a 1Go RAM memory.

The first three tables correspond to the results computed from

the RGB images. First of all, let us compare the first two tables,

obtained respectively with dmax = 25 and 50 and wmax = 25. Note

that the execution times increase with a high value dmax, since a

large number of 3D intervals have to be analyzed. However, the

classification results are not significantly improved, according to

the number of classes Nb 2.

The second stage of the procedure reduces 18 times the

number of color in average with wmax = 25 and dmax = 50 and
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Window Parrots Caps
FIG. 6. Initial RGB images from the Kodak color image data base.

FIG. 7. Connectedness degrees of 3D intervals D(IIIn) and their associated

sizes of interval.

17 times with wmax = 25 and dmax = 25.

The third table collects the results for wmax = 15 and dmax =
50. Obviously, a large number of color combinations is extracted

at the first stage. Consequently, the total computation times in-

crease significantly. The second stage of the algorithm decrease

the number of colors 30 times in average, but it finally leads to a

large number of classes (see Nb 2).

Fig. 9 illustrates the results outputted for the different values

wmax and dmax on Caps. Obviously, the results for dmax = 25

and dmax = 50 are qualitatively similar (wmax = 25), while the

computation time is twice lower with dmax = 25. The values

wmax = 15 and dmax = 50 lead to an over-classification (132

classes).

Thus, to ensure a good trade-off between effectiveness

and computation times, wmax and dmax can be fixed reasonably

around 10 % of the initial range.

The last results of Table 1 are computed in the HSV re-

presentation, for wmax and dmax around 10 % of the range. The

execution times are significantly reduced compared to the RGB

space. Indeed, the analysis of the connectedness degrees provides

a lower number of marginal classes. It is well known that the

HSV space some more homogeneous regions than in RGB space,

especially on the hue component (material homogeneity, inde-

pendent from shadows and specular reflection). Therefore less

data have to be processed at the second stage. However, because

of the non-correlated HSV components, the stage 2 is less ef-

fective than in the RGB space. Fig. 10 illustrates some results

(a) (b)

(c) (d)

(e) (f)
FIG. 8. Classification results for the images Window (left column) and Par-

rots (right column) in the RGB space.

obtained from the HSV representation of Caps. For display pur-

pose, the Hue, Saturation and Value components are represented

on the R, G and B channels respectively. Note on Fig. 10(c), that

with wmax = 40 and dmax = 40, the classification provides both

the subtraction of most shadows and the extraction of material

homogeneities.

Conclusion
We have designed a two-stages classification procedure ba-

sed on the color connectedness degrees. It first reduces the num-

ber of distinguishable monochromatic colors for each color chan-

nel by analyzing the marginal connectedness degree. Then, the

resulting color components are combined together in order to de-

fine the new set of colors, significantly reduced compared to the

initial set (in general 2553 possible colors). Once the number of

colors have been reduced, the connectedness degree of the tri-

chromatic intervals can be reasonably computed. This method

has been evaluated qualitatively and quantitatively on the Ko-

dack image data base. It provides the extraction of homogeneous

regions in the image. Besides, the parameters involved are not

critical, they can be reasonably fixed to 10 % of the color range.

In future works, it will be applied to road segmentation for

a car driven-assistance application.In addition, this approach can

be extended to other type of data, such as velocity components
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(a) (b) (c)
FIG. 9. Evaluation of the parameters on the image Kodim04 in RGB space. (a) wmax = 25, dmax = 50, 45 classes, 7.3 sec. (b) wmax = 25, dmax = 25, 46 classes,

3.02 sec. (c) wmax = 15, dmax = 50, 132 classes, 24.8 sec.

(a) (b) (c)
FIG. 10. Evaluation of the parameters on the image Kodim04 in HSV space. (a) wmax = 25, dmax = 50, 58 classes, 3.92 sec. (b) wmax = 25, dmax = 25, 58

classes, 6.25 sec. (c) wmax = 40, dmax = 40, 24 classes, 3.82 sec.

for motion analysis.
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(a) Results on the Kodak images in the RGB space with

parameters wmax = 25 and dmax = 50.

Nb 1 Nb 2 Mean time (in sec.)

Minimum 336 15 6,73

Maximum 968 64 24,81

Mean 598,7 32,8 12,70

(b) Results on the Kodak images in the RGB space with

parameters wmax = 25 and dmax = 25.

Nb 1 Nb 2 Mean time (in sec.)

Minimum 336 15 3,02

Maximum 968 69 21,08

Mean 598,7 35,4 7, 20

(c) Results on the Kodak images in the RGB space with

parameters wmax = 15 and dmax = 50.

Nb 1 Nb 2 Mean time (in sec.)

Minimum 1560 28 21,09

Maximum 3136 153 49,30

Mean 2178,3 71,18 35,15

(d) Results on the Kodak images in the HSV space with

parameters wmax = 25 and dmax = 25.

Nb 1 Nb 2 Mean time (in sec.)

Minimum 160 20 2,72

Maximum 567 66 10,07

Mean 377,5 50,77 4,3

Table 1. Classification results computed on the Kodak color

image data base (23 images). The tables collects the mini-

mum, maximum and average values of three criteria : the total

number of combined colors computed by the marginal ana-

lysis of the connectedness degrees (Nb 1), the final number

of classes available in output of the analysis of the vectorial

connectedness degree (Nb 2), and the executing times.
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