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Abstract
A new issue in texture analysis is its extension to temporal

domain, a field known as Dynamic Texture analysis. Dynamic,
or temporal, texture is a spatially repetitive, time-varying visual
pattern that forms an image sequence with a certain temporal
stationarity. Following recent work, color image decomposition
into geometrical, texture and a noise components appears as a
good way to extracting meaningful information, i.e texture com-
ponent, independently of noise and geometrical information.

In this way, we propose to extend spatial color decompo-
sition model to spatiotemporal domain, and attempt to separate
static texture present in video and real dynamic texture. To our
best knowledge, no such time adaptation is currently available.

Introduction
Motivation

A new issue in texture analysis is its extension to temporal
domain, a field known as Dynamic Texture analysis. Dynamic,
or temporal, texture is a spatially repetitive, time-varying visual
pattern that forms an image sequence with a certain temporal sta-
tionarity. In Dynamic Texture, the notion of self-similarity cen-
tral to conventional image textures is extended to spatiotemporal
aspect.

Dynamic textures are typically result from processes such
as water flows, smoke, fire, a flag blowing in the wind, a moving
escalator, or a walking crowd. Important tasks are thus detec-
tion, segmentation and perceptual characterization of dynamic
textures. The ultimate goal is to be able to support video queries
based on the recognition of the actual natural and artificial dy-
namic texture processes.

Following recent work, color image decomposition into ge-
ometrical, texture and a noise components appears as a good way
to reach this aim in extracting meaningful information, i.e texture
component, independently of noise and geometrical information.
In this way, we propose to extend spatial color decomposition
model to spatiotemporal domain, and attempt to separate static
texture present in video and real dynamic texture. To our best
knowledge, no such time adaptation is currently available.

Overview of the paper
The aim of this work is to extend a model, which decom-

pose color image into three components, a first one containing
geometrical structure: U, a second V, holding the textural infor-
mation and the last one containing the noise: W, to spatiotempo-
ral domain. So, we aim to deal with color image sequences in
extending to time existing reliable model. Moreover, in the de-
composition texture component, we attempt to determinate spa-
tial texture from texture showing a real dynamicity, which will
be suit for future work on dynamic texture.

In the first place of this paper we introduce the extended
minimization functional problem and the associate discrete

framework in which we place ourself and which is an appropriate
one in image sequence processing. In a second part we present
the extended time decomposition model and its grayscale imple-
mentation. Then in the third part, we will be examining the vari-
ous challenges arising from the introduction of color model, our
proposition to solve this problem and its numerical implementa-
tion. Finally, in the last part, we present two way to discriminate
static from dynamic textures in image sequence. We will present
too, choice and influence of parameters and show and discuss
some significant results.

Time extension of decomposition model
Spatiotemporal structure

In order to decompose image sequences in suitable com-
ponents we propose to extend the Aujol-Chambolle [2] decom-
position model. Its rely on dual norms derived from BV 1,G2

and E3spaces. Authors propose to minimize the following dis-
cretized functional:

in f
(u,v,w)∈X3

F(u,v,w) = J(u)︸︷︷︸
Regularization

TV

+ J∗
(

v
µ

)
︸ ︷︷ ︸

Texture
extraction

+ B∗
(w

δ

)
︸ ︷︷ ︸

Noise extraction
by shrinkage

+
1

2λ
‖ f −u− v−w‖2

X︸ ︷︷ ︸
Residual part

(1)

where X is the Euclidian space RN×N .

To take into account the spatiotemporal structure, we con-
sider a video as an 3-D image [1], i.e a volume, so that we can
apply 2-D image algorithms extended to the 3-D case. We as-
sume that we have a given image sequence f ∈ L2(Ω), where Ω

is an open and bounded domain on R3, with Lipschitz boundary.
In order to recover u, v, w from f , we propose:

• An extended total variation definition:∫
t

∫
Ω

∣∣∇xytu
∣∣dx dy dt (2)

where ∇xytu the spatiotemporal gradient of u.

1BV (Ω) is the subspace functions u ∈ L1(Ω) such that the following quantity,

called the total variation of u, is finite:

J(u) = sup
{∫

Ω

u(x)div(ξ (x))dx
}

such that ξ ∈C1
c (Ω,R2), ||ξ ||L∞(Ω) ≤ 1

2G is the subspace introduced by Y.Meyer for oscillating patterns.
3E is a dual space to model oscillating patterns: E =

.
B

∞

−1,∞ dual space of
.
B

1
1,1
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• A new definition of G extended to a third dimension:
G is the Banach space composed of the distributions f
which can be written f = ∂1g1 + ∂2g2 + ∂3g3 = divxt(g)
with g1, g2 and g3 in L∞(Ω). On G, the following norm is
associate:

‖ f‖G = in f{‖g‖L∞(Ω,R3); f = div(g)} (3)

Discretization
From now on, we consider the discrete case. We take here

the same notation as in [2] and we present the Total Variation
discretization. Let ∇u the gradient vector given by:

(∇u)i, j,k =
(
(∇u)1

i, j,k,(∇u)2
i, j,k,(∇u)3

i, j,k

)
(4)

(∇u)1
i, j,k =

{
ui+1, j,k−ui, j,k if i < N
0 if i = N

(∇u)2
i, j,k =

{
ui, j+1,k−ui, j,k if j < N
0 if j = N

(∇u)3
i, j,k =

{
ui, j,k−ui, j,k−1 if k < N
0 if k = N

The discrete TV of u is given by:

J(u) = (∇u)1
i, j,k +(∇u)2

i, j,k + c(∇u)3
i, j,k (5)

we introduce the c constant to maintain homogeneity between
space and time component. It’s mainly for numerical implemen-
tation, to avoid discretization problem due to quantization step,
which be different along space and time dimension. In practice,
we often set it to one, but user can adapt it to less, more or in
function of frame per second, or quickness of movement present
in sequence, to ensure most reliability and homogeneity.

Spatiotemporal grayscale decomposition
The Chambolle’s projection algorithm [4] is a smart way to

numerically solve the different minimization problems induced
by the functional (1), using fixed point method: p0 = 0, and

pn+1
i, j,k =

pn
i, j,k + τ(∇(div(pn)− f /λ ))i, j,k

1+ τ
∣∣(∇(div(pn)− f /λ ))i, j,k

∣∣ (6)

As shown in [4] if τ is small enough, that ensure the convergence
of the algorithm.

So, to solve (1) authors propose to solve successively three
different problems:

• v and w fixed:

in f
u∈X

(
1

2λ
‖ f −u− v−w‖2

X + J(u)
)

(7)

ũ = f −u− v−w−PGλ
( f − v−w) (8)

• u and w fixed:

in f
v∈Gµ

‖ f −u− v−w‖2
X (9)

ṽ = PGµ
( f −u−w) (10)

• u and v fixed:

in f
w∈δBE

‖ f −u− v−w‖2
X (11)

w̃ = PδBE
( f −u− v) (12)

= f −u− v−WST ( f −u− v,θ) (13)

where WST stands for the wavelet soft-thresholding, extended to
time, with non linear diffusion equations [8], of f − u− v with
threshold θ :

Sθ (wi) = wi

(
1−13θ

(√
w2

x +w2
y +w2

t +2w2
xy +2w2

xt +2w2
yt +4w2

xyt

)−1
)

if Sθ (wi)≥ (13θ), 0 otherwise. (14)

Figure 1 present our grayscale decomposition. We can dis-
tinctly see time influence, reed’s branch oscillating under wa-
ter flow is clearly highlight. Moreover, waves present in basin’s
fountain are well regularized in U component, water dynamicity
is totaly catch as texture.

Figure 1. Spatiotemporal grayscale decomposition: Top left: f the original

image from sequence, top right: U geometrical component, bottom left: W

noise component, bottom right: V + 127 texture component.

Reader can report to Figure 5 and 6 to have comparison
and difference between classic color decomposition and its spa-
tiotemporal extension. Difference between two successive im-
ages of U, statically decomposed, presents about four times less
information than our time extended decomposition.

Spatiotemporal color decomposition
In order to solve total variation minimization of color image

sequence, we adapt the solution of Aujol and Ha Kang [3], to
time. In fact, Chambolle’s projection is not suitable to deal with
color image sequences, due to its single plan limitation. To avoid
the problem of regularization, authors use classic TV minimiz-
ing functional, solving Euler-Lagrange, into Chromaticity and
Brightness (CB) and don’t extract noise component. To realize
their numerical implementation, they use digital TV filter, based
on work of Chan, Osher and Chen [5].

Digital TV filter implementation
In order to adapt the solution of [3] to spatiotemporal aspect

we readapt their solution to temporal aspect. We reformulate
the energy functional of [5], using spatio-temporal gradient and
extending neighborhood graph to time neighbors (as seen in Fig-
ure 2).

Given a noisy image’s sequence u0, we redefine energy
fonctional (presented in [5]), adapted to spatiotemporal gradient
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formulation as (with λ , the Lagrange multiplier):

J(u) =
∫

t

∫
Ω

∣∣∇xytu
∣∣dxdydt +

λ

2

∫
t

∫
Ω

(u−u0)2dxdydt

(15)

The data that need to be regularized are assumed to be liv-
ing on a graph. A general digital domain is modeled by a graph
[Ω,E], with a finite set Ω of nodes and an edge dictionary E. If
α and β are linked by an edge, whether spatially or temporally,
we write α ∼ βst . A digital scalar signal u is a function on Ω,
u : Ω→R. The value at node α is denoted by uα and local varia-

tion at any node is defined as |∇α u| :=
√

∑βst∼α (uβst
−uα )2, and

the regularized local variation, in its conditioned form (to avoid
singularity for |∇u| in denominator of associated Euler-Lagrange
equation), for any positive number ε is:

|∇α u|ε =
√
|∇α u|2 + ε2 (16)

So, for a given noisy spatiotemporal signal u0, the digital
TV filter, F ε,λ

α , is defined as:

F ε,λ
α

(
u,u0

)
= ∑

βst∼α

hαβst
(u)uβst

+hαα (u)u0
α (17)

where the low-pass coefficients filters are given by:

hαβ (u) =
wαβ (u)

λ +∑γ∼α wαγ (u)

hαα (u) =
λ

λ +∑γ∼α wαγ (u)

with wαβ (u) =
1√

|∇α u|2 + ε2
+

1√
|∇β u|2 + ε2

Figure 2. Digital TV filter at node α. The β , δ , τ and γ are α ’s space

neighbors and t+ and t− are α ’s time neighbors. Each arrow means that

the u value at the tail node is multiplied by the filter coefficient beside and

added to α. The exception is the loop arrow at α, for which one uses the

original un-regularized data u0 , instead of the u value.

Color decomposition algorithm
We present the algorithm to decompose color image

sequences in two components, u and v.

(1) Initialization of f ,u,v where f0 is the original sequence
f = f0, u0 = f0 et v0 = 0

(2) Iterate m times
(a) Separate f ,u and v to Brightness ( fb,ub,vb) and

Chromaticity ( fc,uc,vc) components

fb = || f || fc =
f
|| f ||

un
b = ||un|| un

c =
un

||un||
vn

b = ||vn|| vn
c =

vn

||vn||

(b) Iterate n times for update uc and ub

un+1
c = F ε,λc

α (un
c , fc− vn

c)
un+1

b = F ε,λb
α

(
un

b, fb− vn
b
)

un
c = un+1

c et un
b = un+1

b

(c) Update u and calculate the residual r
un+1 = un+1

c ∗un+1
b

rn = f −un+1− vn

(d) Iterate n times for update r
rn+1 = F

ε,µ
α

(
rn, f −un+1− vn)

rn = rn+1

(e) Update v
vn+1 = f −un+1− rn+1

(f) Preparation for the next iteration
un = un+1

vn = vn+1

Influence of parameters and numerical re-
sults

All images and results are compute from DynTex, the dy-
namic texture database [7] which provide a large and diverse
database of high-quality dynamic textures. Dyntex sequences
come from natural scene presenting a wide variety of mov-
ing process as flowing water, leaves blowing in wind, walking
crowd... Such diversity grants user to identify and emphasize a
lot of aspects in testing purpose.

Influence of parameters
The parameter which defined the wide of oscillations cap-

tured in texture is µ . It’s represent, in some sense, the detail level
of our decomposition in space and time. Parameters λb and λc
in filter process control intensity of regularization process, they
represent, in some sense, the scale of regularization.

To obtain week regularization, we use parameters as: µ be-
tween 0.5 and 1, λb and λc near to 1.

For classic parameters, which work well for most of dy-
namic sequence aspect, we set µ at 0.01, λb at 0.04 and λc at
0.01, we compute three total iterations of our algorithm and ten
loops for each call of filtering.

For strong regularization and to catch lot of space and time
oscillation we set λb and λc smaller: 0,001 or less, µ at 0.001 or
less and iterated our algorithm twenty times or more computed
on sixteen or thirty-two images bloc.
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Separation of dynamic from static texture
In this part we present two methods to separate real dynam-

icity presents in dynamic texture, from static component. In fact
we consider the time part in our computation of texture compo-
nent, only if enough dynamicity is present.

The first method rely on optical flow computation, and on a
thresh on the norm of movement vectors.

The second one is determinate by the proximity between
time and spatial gradient, thanks to ratios computing into
grayscale projection algorithm.

We obtain visually good results (better with second method)
and separate well dynamic from static component of the texture
part. We can clearly see movement of flowing water, extract in
Figure 4. So in our process we only take out moving (or non
moving) objects in V component and regularized the correspond-
ing part in U component. Such method present interest for seg-
mentation or characterization on dynamic texture tasks.

Numerical results
We present, in Figure 3, a part of a decomposed sequence

of flowing water under wood bridge. We can see the static
aspect of U component, regularized in space and in time, seems
to be freezed, although texture component, V, present a real
dynamic, strengthened by time influence. Only moving things or
objects presenting dynamicity are enhanced into V component.
In this way we obtain the dynamicity present in video through
oscillations along time dimension. Geometrical structures are
well regularized and time varying details are strengthen and well
captured with our method.

In order to prove that our dynamic decomposition method
show more significant result than static decomposition, we
present a comparison between two methods (static and dynamic
decomposition are both computed with same classic param-
eters). We can easily see that time impact in result, water in
Figure 3 and Figure 6 is well regularized and fluid aspect is
well represent in the V component. Moreover, if user tunes
parameters to obtain stronger regularization, our algorithm is
able to catch wider waves in spatiotemporal texture component:
see the circumference of foutain in Figure 6, more regularized
(in U component) than wider waves. It’s a matter of deep in
spatiotemporal texture extraction, wich our algorithm is able to
deal with.

In Figure 5 we can clearly see the reenforcement of moving
cars texture without that static part and objects present in
sequence are taken into account. For example, the simple differ-
ence between V component in dynamic and successive classic
decomposition, as presented in Figure 5 and Figure 6, show a
factor between two and four more details in our model (for a
sequence presenting a real dynamic). Moreover reconstruction
U + V is faithful to original at about nighty-six percent against
about nighty percent in static model.

For more details, demonstration sequence, wider range
of results and for a prsentation of similar method, rellying
on real different approache [6], please consult this URL:
http://perso.univ-lr.fr/mlugiez.
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Figure 3. Top left: f the original image from sequence, top right: U geometrical component, bottom left: Reconstruction U + V, bottom right: V + 127 texture

component

Figure 4. From top to bottom, U component and V component of spatiotemporal grayscale decomposition. From left to right spatiotemporal decomposition,

its static part and its dynamic part taking into account gradient proximity with.
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Figure 5. In left, static decomposition, top: the geometrical component U, bottom: the texture component V. At center, top: image from original sequence

f, bottom: simple difference between texture component from classic decomposition and from spatiotemporal decomposition. In right, top: the geometrical

component U, bottom: the spatiotemporal texture component V (computed with same parameters than classic decomposition). We can clearly see that only

objects in movement are reenforced in our dynamic texture component.

Figure 6. In left, static decomposition, top: the geometrical component U, bottom: the texture component V. At center, top: image from original sequence

f, bottom: simple difference between texture component from classic decomposition and from spatiotemporal decomposition. In right, top: the geometrical

component U, bottom: the spatia-temporal texture component V (computed with same parameters than classic decomposition). We can clearly see that water

seems to be freezed at the circumference of the fountain on the geometrical component of our decomposition. Moreover lot of movement details appears in

undulations of water.
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