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Abstract
In this paper, we present a spatially adaptive filter for color

median filtering. Several alternative implementations of such a
filter are given, using different ways of gradient computation.
Then, several methods of color median filtering are compared
in terms of performance on a particular image. Vector median
filters are considered as well as median filters inspired by grey-
level methods.

Introduction
Median filtering has been widely explored since the last ten

years and many methods have been presented in order to filter
color images. Some of them are based on vector considerations
[1] and we will compare them to ours. First of all, we recall the
main principle of the spatially adaptive filtering method [2] be-
fore presenting several alternative ways of implementation. The
main difference between the alternative implementations lays in
the determination of color contours. The processes we are going
to consider are based either on color gradient or mathematical
morphology. Finally, a comparison of all those filters is set up.

Spatially adaptive median filter
Recalls about the spatially adaptive filtering pro-
cess

This particular filtering method is based on the determina-
tion of two different maps. The first one is supposed to contain
high frequencies, in other words, contour information, and the
second one is derived from the previous one by computing the
chessboard distance between a point of the image and the closest
contour[3]. The chessboard distance map gives at each point the
half width of the filtering window, this window being chosen as
wide as possible so that it does not contain any part of contours.
Afterwards the filtered value is determined by using a bit-mixing
paradigm [4] in order to sort values in the filtering window. In or-
der to summarize the filtering process, Fig. 2 shows the different
stages of the method.

The main points to be discussed and improved are the
contour detection method and the determination of the filtered
value. The filtering process using the bit-mixing paradigm was
compared to vector methods described in [1] and the results
were presented in [5]. In the following, we pay more attention
to the contour detection. So we are going to set up different
ways of determining color contour location in order to create
a contour map by thresholding, and we will give the filtering
results on a particular image (Fig. 1).

In the original version of the adaptive median filter, the con-
tour detection was approximated by a color Euclidean distance

Figure 1. Original image

map, that enables to locate spots where the color difference be-
tween a point and two of its neighbors is the highest [2]. This
map is then thresholded in order to keep only significant color
differences.

Alternative contour detection
In this paper other family of color contour maps has been

explored besides the basic contour map based on the Euclidean
distance between colors. More precisely, working in the lumi-
nance, saturation and hue representation in norm L1 [6] (named
LSH representation), we have calculated for each color image the
following barycentric color gradient:

ρ(f)(x)= fS(x)×ρ
◦( fH)(x)+(1− fS(x))×ρ( fL)+ρ( fS).(1)

where the L1 saturation, fS(x), balances the effects of luminance
and hue gradients, ρ( fL) and ρ◦( fH). Further details about the
computation of morphological gradients ρ( f ) are given in [6]
. The gradient of saturation is also included to include also the
contours exclusively associate to changes in the saturation. We
have also compared in our study the results associated to the LSH
gradient with those for the classical L*a*b* gradient (i.e., the
Euclidean distance in the L*a*b* color space). The L*a*b* gra-
dient at any point x is based on computing the Euclidean distance
in L*a*b* between the color points of the unitary ball centred at
the current point, K(x), in order to obtain the maximal variation
of distance which corresponds to the estimate of the modulus of
the perceptual color gradient, i.e.,

ρ
L∗a∗b∗(f)(x) = ∨[dL∗a∗b∗

E (f(x), f(y)),y ∈ K(x)] (2)

where dL∗a∗b∗
E (ci,c j) is the perceptual distance between the

colors i and j (with ck = (cL∗
k ,ca∗

k ,cb∗
k ) ) :
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Figure 2. Stages of the filtering process

dL∗a∗b∗
E (ci,c j)=

√
(cL∗

i − cL∗
j )2 + ca∗

i − ca∗
j )2 + cb∗

i − cb∗
j )2.

In addition to the contours between color regions, we con-
sider that a spatially adaptive median filter must take into account
also the presence of small, but very contrasted, color details. The
median filter should remove the noise without removing these
structures. The extraction of the details is achieved by means of
the morphological color top-hats [6], defined as follows

• The chromatic top-hat is given by
ρ

C
B (f) = [ fS×ρ

◦
B( fH)]∨ρ

+
B ( fS), (3)

where the product sign “×” means a pointwise multipli-
cation of function values. This operator extracts the fast
variations of color regions on a saturated color background
(i.e. saturated color peaks on uniform color regions) and
the fast variations of saturated color regions on an achro-
matic (unsaturated) background (i.e. saturated color peaks
on achromatic regions).

• The white-achromatic top-hat is the absolute value differ-
ence between the chromatic top-hat and the global bright
top-hat,

ρ
A+
B = |ρC

B −ρ
↑
B|, (4)

where the global bright top-hat is calculated by
ρ
↑
B(f) = ρ

+
B ( fL)∨ρ

−
B ( fS). (5)

It characterizes the fast variations of bright regions (i.e.
positive peaks of clearness) and the fast variations of achro-
matic regions on a saturated background (i.e. unsaturated
peaks: black, white and grey on color regions).

• The black-achromatic top-hat is the difference ρ
A−
B =

|ρC
B − ρ

↓
B|, where the global dark top-hat is obtained by

ρ
↓
B(f) = ρ

−
B ( fL)∨ρ

−
B ( fS). Dually, it tackles the fast vari-

ations of dark regions (i.e. negative peaks of clearness)
and the fast variations of achromatic regions on a saturated
background. The term ρ

−
B ( fS) appears in both ρ

↑
B and ρ

↓
B

to achieve symmetrical definitions.

We have compared the effects of the chromatic and white/black-
achromatic top-hats for adapting the median filter. Both the color
gradients and color top-hats are thresholded in order to build the
corresponding binary maps.

Experimental results and comparison to vec-
tor filters

Fig. 3 shows the effects of such a filter when using the previ-
ous different methods for contour detection on the original image
of Fig. 1. The intermediate contour images have been thresh-
olded at 30 in every case in order to obtain the contour map. We
can note the main differences between the filtered images and the
degradation of the original image around the letters.

Elements of comparison
Several values are going to be used in order to evaluate the

efficiency of the filters under study. First of all, the mean absolute
error (MAE) and the mean square error (MSE) are estimated,
as well as the normalized color difference (NCD) and the peak
signal-to-noise ratio (PSNR) [7][8][1][9].

Experimental results for the spatially adaptive fil-
ter

Firstly, let us have a look to experimental results of the spa-
tially adaptive filter.

Results for spatially adaptive median filtering using the bit-
mixing paradigm and a color difference map

Threshold MAE MSE NCD PSNR
5 0.150 0.229 0.003 94.784

15 0.775 2.955 0.010 72.845
25 1.498 8.724 0.015 62.740
35 2.220 16.985 0.020 56.537
45 3.097 32.015 0.025 50.730
55 3.929 49.581 0.029 46.675
65 4.959 77.802 0.034 42.143
75 5.948 109.678 0.039 39.099
85 7.224 163.397 0.044 35.457
95 9.175 264.515 0.053 30.741

Results for spatially adaptive median filtering using the bit-
mixing paradigm and achromatic top-hat contours

Threshold MAE MSE NCD PSNR
5 2.153 39.840 0.015 50.232
10 2.977 53.587 0.021 47.048
15 3.680 66.534 0.025 44.740
20 4.248 77.707 0.029 43.010
25 4.754 89.260 0.032 41.482
30 5.282 103.345 0.035 39.972
35 5.843 121.015 0.030 38.330
40 6.385 140.860 0.041 36.866
45 6.878 160.092 0.043 35.656
50 7.323 177.788 0.045 34.653
55 7.859 201.704 0.047 33.379
60 8.357 226.985 0.049 32.259
65 8.782 248.402 0.051 31.374
70 9.157 267.089 0.053 30.645
75 9.636 291.873 0.055 29.770
80 10.191 322.319 0.050 28.782
85 10.817 358.247 0.061 27.735
90 11.025 369.408 0.062 27.467
95 11.244 381.575 0.062 27.205

100 11.468 394.424 0.063 26.929

Median filter using a bit-mixing paradigm
Directly inspired by the gray scale median filter this ap-

proach requires a total order on the set of gray levels for the
computation of the median value. Actually, as there exists no
such total order for color vectors, a bit-mixing paradigm is used
to provide a sequence on any window W [4]. Let us consider a
scalar value ki associated with each color vector xi of W . For
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Figure 3. Spatially adaptive median filter with contour detection by a) color difference b) gradient Lab, c) achromatic top hat and d) gradient LSH.

Results for spatially adaptive median filtering using the bit-
mixing paradigm and chromatic top-hat contours

Threshold MAE MSE NCD PSNR
5 1.249 22.752 0.009 56.333

10 2.132 34.466 0.016 51.759
15 2.871 46.245 .021 48.545
20 3.526 58.102 0.025 46.092
25 4.153 72.418 0.029 43.794
30 4.785 87.844 0.032 41.753
35 5.455 108.415 0.036 39.599
40 6.102 130.596 0.039 37.721
45 6.643 150.682 0.042 36.338
50 7.138 169.926 0.044 35.175
55 7.641 192.842 0.046 34.017
60 8.103 214.554 0.048 32.993
65 8.506 235.010 0.050 32.109
70 8.793 248.381 0.051 31.557
75 9.205 269.811 0.053 30.759
80 9.652 293.814 0.055 29.909
85 10.090 317.236 0.056 29.146
90 10.405 333.055 0.058 28.624
95 10.816 356.203 0.059 27.985
100 11.346 386.813 0.062 27.150

example, if xi is an RGB vector represented by 3 bytes, ki is a
24-bit integer value as shown in Fig. 4.

The values ki are arranged in order. Afterwards, vectors xi
are sorted according to values ki to obtain a set of ordered vectors

Results for spatially adaptive median filtering using the bit-
mixing paradigm and Lab gradient

Threshold MAE MSE NCD PSNR
5 0.100 0.111 0.002 99.922
10 0.491 1.655 0.006 78.164
15 1.046 5.889 0.010 66.731
20 1.837 16.783 0.015 57.463
25 3.041 42.646 0.021 48.645
30 4.613 88.060 0.028 41.658
35 6.937 182.653 0.040 34.545
40 9.180 288.807 0.051 30.003
45 10.517 359.751 0.056 27.995
50 11.713 427;522 0.061 26.389
55 12.201 452.559 0.064 25.833
60 12.465 466.381 0.065 25.547
65 12.555 471.606 0.066 25.435
70 12.577 472.797 0.066 25.412
75 12.577 472.797 0.066 25.412
80 12.577 472.797 0.066 25.412
85 12.577 472.797 0.066 25.412
90 12.577 472.797 0.066 25.412
95 12.577 472.797 0.066 25.412

100 12.577 472.797 0.066 25.412

yi. Then the bit-mixing filter value, BMF(W ), is given by:

BMF(W ) = xM (6)

such that xM = y N+1
2

.
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Results for spatially adaptive median filtering using the bit-
mixing paradigm and LSH gradient

Threshold MAE MSE NCD PSNR
5 0.089 0.082 0.002 102.253
10 0.352 0.827 0.006 84.753
15 0.697 2.706 0.009 74.658
20 1.088 5.778 0.012 67.668
25 1.550 10.898 0.015 61.817
30 2.140 20.701 0.018 56.091
35 2.885 38.295 0.022 50.475
40 3.736 59.401 0.026 46.187
45 4.545 79.362 0.030 43.287
50 5.225 96.455 0.033 41.344
55 5.976 118.486 0.037 39.300
60 6.799 147.918 0.040 37.173
65 7.652 182.861 0.044 35.118
70 8.578 224.178 0.047 33.096
75 9.446 275.836 0.050 31.149
80 10.179 323.139 0.053 29.607
85 10.755 357.586 0.056 28.561
90 11.230 305.095 0.058 27.746
95 12.042 438.291 0.063 26.296

100 12.498 466.932 0.065 25.531

Figure 4. Bit-mixing paradigm.

Results for median filtering using the bit-mixing paradigm

Window size MAE MSE NCD PSNR
1 2.804 56.102 0.017 47.167
2 5.508 134.226 0.031 38.321
3 8.783 267.689 0.047 31.415
4 11.200 396.631 0.059 27.353
5 13.216 497.212 0.070 24.922

Vector median filter
A distance measure Di is associated with each vector xi:

Di =
N

∑
j=1
||xi− x j||L (7)

for i = 1..N, where ||xi − x j||L is the distance between xi and
x j regarding the L-norm. Then the vector median filter value,
V MF(W ), is given by:

V MF(W ) = xM (8)

such that DM = mini=1..NDi.

Basic vector directional filter
An angular measure αi is associated with each vector xi:

αi =
N

∑
j=1

A(xi,x j) (9)

Results for vector median filtering for norm L1

Window size MAE MSE NCD PSNR
1 2.649 53.844 0.016 47.635
2 5.215 126.877 0.029 38.879
3 8.314 254.103 0.044 31.932
4 10.453 370.853 0.055 28.013
5 12.197 457.836 0.065 25.605

Results for vector median filtering for norm L2

Window size MAE MSE NCD PSNR
1 2.426 53.562 0.012 48.066
2 4.877 125.745 0.023 39.530
3 7.886 250.960 0.036 32.574
4 9.957 361.764 0.045 28.837
5 11.584 450.529 0.053 26.556

Results for vector median filtering for norm L3

Window size MAE MSE NCD PSNR
1 2.458 54.011 0.012 47.993
2 4.926 127.501 0.024 39.420
3 7.981 255.824 0.036 32.423
4 10.107 372.641 0.045 28.625
5 11.716 458.866 0.052 26.447

for i = 1..N, where A(xi,x j) is the scalar value representing the
angle between xi and x j. Then the basic vector directional filter
value, BV DF(W ), is given by:

BV DF(W ) = xM (10)

such that αM = mini=1..Nαi.

Results for vector directional median filtering

Window size MAE MSE NCD PSNR
1 3.477 90.061 0.015 43.189
2 7.162 237.515 0.031 33.561
3 10.781 444.525 0.045 27.263
4 13.085 589.154 0.055 24.352
5 15.021 732.356 0.064 22.063

Directional distance filter
A scalar value Ωi, mixing distance and angular measures, is

associated with each vector xi:

Ωi = Di
1−ω .αω

i (11)

for i = 1..N. Thus:

Ωi =

(
N

∑
j=1
||xi− x j||L

)1−ω

.

(
N

∑
j=1

A(xi,x j)

)ω

(12)

where ω is a power value ranged from 0 to 1 that modulates the
relative influence of Di and αi in the calculus. Then the direc-
tional distance filter value, DDF(W ), is given by:

DDF(W ) = xM (13)

such that ΩM = mini=1..NΩi.
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Results for vector directional median filtering for norm L1

Windowsize ω MAE MSE NCD PSNR
1 0.10 0.126 0.306 0.002 95.740
2 0.10 0.124 0.245 0.002 97.278
3 0.10 0.112 0.232 0.002 98.032
4 0.10 0.093 0.225 0.002 98.922
5 0.10 0.074 0.191 0.001 100.848
1 0.20 1.148 15.537 0.007 60.265
2 0.20 1.075 9.231 0.008 64.701
3 0.20 1.075 9.758 0.009 64.275
4 0.20 1.034 9.908 0.009 64.213
5 0.20 1.077 13.233 0.009 61.668
1 0.30 2.401 54.646 0.011 47.940
2 0.30 4.927 127.374 0.023 39.448
3 0.30 7.834 248.867 0.036 32.716
4 0.30 9.486 338.853 0.043 29.518
5 0.30 10.629 406.250 0.049 27.592
1 0.40 2.409 55.705 0.011 47.779
2 0.40 4.957 128.536 0.023 39.381
3 0.40 8.030 257.710 0.036 32.393
4 0.40 10.172 372.918 0.046 28.611
5 0.40 11.787 467.987 0.053 26.249
1 0.50 2.421 56.924 0.011 47.596
2 0.50 4.981 128.998 0.023 39.361
3 0.50 8.098 261.523 0.036 32.264
4 0.50 10.223 376.358 0.046 28.535
5 0.50 11.877 475.833 0.053 26.100
1 0.60 2.436 57.451 0.011 47.517
2 0.60 5.031 131.846 0.023 39.167
3 0.60 8.174 266.443 0.036 32.100
4 0.60 10.300 382.094 0.046 28.398
5 0.60 11.999 487.246 0.053 25.874
1 0.70 2.483 59.182 0.011 47.236
2 0.70 5.136 137.020 0.024 38.813
3 0.70 8.268 273.131 0.037 31.875
4 0.70 10.412 390.553 0.046 28.198
5 0.70 12.101 496.856 0.054 25.686
1 0.80 2.601 62.948 0.012 46.650
2 0.80 5.325 146.149 0.024 38.210
3 0.80 8.419 283.375 0.037 31.534
4 0.80 10.528 401.573 0.047 27.946
5 0.80 12.218 513.565 0.054 25.370
1 0.90 2.872 71.338 0.013 45.450
2 0.90 5.646 161.299 0.025 37.277
3 0.90 8.709 304.702 0.038 30.857
4 0.90 10.778 425.866 0.047 27.409
5 0.90 12.513 543.438 0.055 24.838

Interpretation

All these error estimations show that the spatially adaptive
filter gives better results than vector methods, whatever the con-
tour detection method is. Furthermore, color gradient methods
best score on the particular image under study.
For the Lab gradient, we can see that we obtain the same error
results for the threshold value varying from 70 to 100. That is be-
cause the maximal value on the Lab gradient image is less than
70. In this way the thresholded gradient image is the same for all
threshold values greater than 70.

Results for vector directional median filtering for norm L2

Windowsize ω MAE MSE NCD PSNR
1 0.10 0.216 0.743 0.003 88.296
2 0.10 0.233 0.679 0.003 88.766
3 0.10 0.242 0.810 0.003 87.688
4 0.10 0.211 0.734 0.003 88.684
5 0.10 0.178 0.610 0.003 90.360
1 0.20 1.928 41.835 0.009 50.728
2 0.20 1.989 27.902 0.012 54.375
3 0.20 2.247 37.856 0.014 51.445
4 0.20 2.243 44.833 0.014 49.916
5 0.20 2.220 48.363 0.014 49.225
1 0.30 2.396 54.786 0.011 47.932
2 0.30 4.946 128.299 0.023 39.410
3 0.30 7.978 254.833 0.036 32.501
4 0.30 10.060 366.095 0.045 28.791
5 0.30 11.580 455.053 0.052 26.529
1 0.40 2.405 55.974 0.011 47.749
2 0.40 4.968 128.939 0.023 39.371
3 0.40 8.049 258.954 0.036 32.359
4 0.40 10.206 374.706 0.046 28.576
5 0.40 11.825 470.056 0.053 26.219
1 0.50 2.421 57.165 0.011 47.566
2 0.50 4.989 129.554 0.023 39.334
3 0.50 8.127 263.118 0.036 32.216
4 0.50 10.269 378.591 0.046 28.484
5 0.50 11.912 477.828 0.053 26.060
1 0.60 2.441 57.845 0.011 47.457
2 0.60 5.047 132.786 0.023 39.108
3 0.60 8.199 268.160 0.036 32.050
4 0.60 10.356 385.375 0.046 28.323
5 0.60 12.033 488.982 0.054 25.840
1 0.70 2.490 59.408 0.012 47.202
2 0.70 5.154 137.824 0.024 38.765
3 0.70 8.298 274.854 0.037 31.821
4 0.70 10.442 392.264 0.046 28.162
5 0.70 12.132 498.679 0.054 25.648
1 0.80 2.613 63.297 0.012 46.599
2 0.80 5.334 146.561 0.024 38.188
3 0.80 8.446 285.228 0.037 31.474
4 0.80 10.559 403.850 0.047 27.899
5 0.80 12.266 516.819 0.054 25.308
1 0.90 2.883 71.630 0.013 45.411
2 0.90 5.662 161.718 0.025 37.254
3 0.90 8.738 306.838 0.038 30.792
4 0.90 10.804 428.042 0.047 27.362
5 0.90 12.544 545.675 0.055 24.801

Conclusion
In this paper we have presented several alternative meth-

ods to implement a spatially adaptive median filter. The main
difference between the alternative methods is the method used
to detect color contours. In the primary method a color differ-
ence map based on the Euclidean distance between colors was
used. In this paper we have taken into account more sophisticated
methods such as color gradient or top-hats. Each of these alter-
native methods have been tested on a particular image. Results
are slightly different when comparing error estimations such as
mean absolute error, mean square error, normalized color differ-
ence or peak signal-to-noise ratio. Nevertheless scores are better

392 ©2008 Society for Imaging Science and Technology



Results for vector directional median filtering for norm L3

Windowsize ω MAE MSE NCD PSNR
1 0.10 0.258 1.015 0.003 85.554
2 0.10 0.272 0.857 0.004 86.732
3 0.10 0.287 1.027 0.004 85.509
4 0.10 0.262 1.007 0.003 85.865
5 0.10 0.230 0.924 0.003 86.750
1 0.20 2.107 47.457 0.010 49.456
2 0.20 2.370 37.865 0.013 51.487
3 0.20 2.805 55.077 0.016 47.848
4 0.20 2.776 62.807 0.016 46.648
5 0.20 2.745 65.285 0.016 46.292
1 0.30 2.399 55.055 0.011 47.889
2 0.30 4.953 128.578 0.023 39.397
3 0.30 7.997 255.466 0.036 32.487
4 0.30 10.126 369.523 0.045 28.706
5 0.30 11.690 459.443 0.052 26.428
1 0.40 2.402 56.126 0.011 47.732
2 0.40 4.974 129.221 0.023 39.356
3 0.40 8.066 259.629 0.036 32.341
4 0.40 10.227 375.957 0.046 28.546
5 0.40 11.841 470.257 0.053 26.204
1 0.50 2.426 57.326 0.011 47.539
2 0.50 5.002 130.337 0.023 39.282
3 0.50 8.135 263.462 0.036 32.213
4 0.50 10.290 379.703 0.046 28.456
5 0.50 11.931 478.201 0.053 26.040
1 0.60 2.446 58.082 0.011 47.420
2 0.60 5.064 133.379 0.023 39.072
3 0.60 8.207 268.655 0.036 32.036
4 0.60 10.374 386.374 0.046 28.300
5 0.60 12.048 489.480 0.054 25.818
1 0.70 2.495 59.584 0.012 47.175
2 0.70 5.163 138.333 0.024 38.732
3 0.70 8.314 275.574 0.037 31.796
4 0.70 10.454 393.112 0.046 28.144
5 0.70 12.156 500.286 0.054 25.613
1 0.80 2.621 63.556 0.012 46.561
2 0.80 5.340 146.845 0.024 38.170
3 0.80 8.461 286.202 0.037 31.443
4 0.80 10.566 404.549 0.047 27.884
5 0.80 12.277 516.354 0.054 25.312
1 0.90 2.887 71.812 0.013 45.387
2 0.90 5.671 162.199 0.025 37.227
3 0.90 8.755 307.880 0.038 30.761
4 0.90 10.821 429.301 0.047 27.335
5 0.90 12.549 545.601 0.055 24.800

than the ones obtained for vector filtering methods. We have now
to validate our algorithm on a large database of images, in order
to study links between contour detection and filtering efficiency.
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