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Abstract

In this paper, we present a spatially adaptive filter for color
median filtering. Several alternative implementations of such a
filter are given, using different ways of gradient computation.
Then, several methods of color median filtering are compared
in terms of performance on a particular image. Vector median
filters are considered as well as median filters inspired by grey-
level methods.

Introduction

Median filtering has been widely explored since the last ten
years and many methods have been presented in order to filter
color images. Some of them are based on vector considerations
[1] and we will compare them to ours. First of all, we recall the
main principle of the spatially adaptive filtering method [2] be-
fore presenting several alternative ways of implementation. The
main difference between the alternative implementations lays in
the determination of color contours. The processes we are going
to consider are based either on color gradient or mathematical
morphology. Finally, a comparison of all those filters is set up.

Spatially adaptive median filter
Recalls about the spatially adaptive filtering pro-
cess

This particular filtering method is based on the determina-
tion of two different maps. The first one is supposed to contain
high frequencies, in other words, contour information, and the
second one is derived from the previous one by computing the
chessboard distance between a point of the image and the closest
contour[3]. The chessboard distance map gives at each point the
half width of the filtering window, this window being chosen as
wide as possible so that it does not contain any part of contours.
Afterwards the filtered value is determined by using a bit-mixing
paradigm [4] in order to sort values in the filtering window. In or-
der to summarize the filtering process, Fig. 2 shows the different
stages of the method.

The main points to be discussed and improved are the
contour detection method and the determination of the filtered
value. The filtering process using the bit-mixing paradigm was
compared to vector methods described in [1] and the results
were presented in [5]. In the following, we pay more attention
to the contour detection. So we are going to set up different
ways of determining color contour location in order to create
a contour map by thresholding, and we will give the filtering
results on a particular image (Fig. 1).

In the original version of the adaptive median filter, the con-
tour detection was approximated by a color Euclidean distance
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Figure 1. Original image

map, that enables to locate spots where the color difference be-
tween a point and two of its neighbors is the highest [2]. This
map is then thresholded in order to keep only significant color
differences.

Alternative contour detection

In this paper other family of color contour maps has been
explored besides the basic contour map based on the Euclidean
distance between colors. More precisely, working in the lumi-
nance, saturation and hue representation in norm L [6] (named
LSH representation), we have calculated for each color image the
following barycentric color gradient:

p(B)(x) = fs(x) x p° (fir) (x) + (1 = fs(x)) x p(f) +p (fs5)-(1)

where the L saturation, fg(x), balances the effects of luminance
and hue gradients, p(f7) and p°(fg). Further details about the
computation of morphological gradients p(f) are given in [6]
. The gradient of saturation is also included to include also the
contours exclusively associate to changes in the saturation. We
have also compared in our study the results associated to the LSH
gradient with those for the classical L*a*b* gradient (i.e., the
Euclidean distance in the L*a*b* color space). The L*a*b* gra-
dient at any point x is based on computing the Euclidean distance
in L*a*b* between the color points of the unitary ball centred at
the current point, K(x), in order to obtain the maximal variation
of distance which corresponds to the estimate of the modulus of
the perceptual color gradient, i.e.,

PP (8)(x) = VIdE " (£(x), £()) v € K (x)] @

where d5*4*b* (¢;,¢;) is the perceptual distance between the
colors i and j (with ¢ = (cﬁﬂci*,c”*) ):
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Figure 2. Stages of the filtering process
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In addition to the contours between color regions, we con-

sider that a spatially adaptive median filter must take into account
also the presence of small, but very contrasted, color details. The
median filter should remove the noise without removing these
structures. The extraction of the details is achieved by means of
the morphological color top-hats [6], defined as follows

e The chromatic top-hat is given by
ps (£) = [fs x p3(fm)]V pg (fs), 3)

where the product sign “x” means a pointwise multipli-
cation of function values. This operator extracts the fast
variations of color regions on a saturated color background
(i.e. saturated color peaks on uniform color regions) and
the fast variations of saturated color regions on an achro-
matic (unsaturated) background (i.e. saturated color peaks
on achromatic regions).

e The white-achromatic top-hat is the absolute value differ-
ence between the chromatic top-hat and the global bright

top-hat,

ppt = o5 —pyl, @
where the global bright top-hat is calculated by

ps(®) = pif (1) V g (fs). ®)

It characterizes the fast variations of bright regions (i.e.
positive peaks of clearness) and the fast variations of achro-
matic regions on a saturated background (i.e. unsaturated
peaks: black, white and grey on color regions).

e The black-achromatic top-hat is the difference pg_ =

\ pg — pll; , where the global dark top-hat is obtained by
pll;(f) = pg (fL) V pg (fs). Dually, it tackles the fast vari-
ations of dark regions (i.e. negative peaks of clearness)
and the fast variations of achromatic regions on a saturated

background. The term py (fs) appears in both pg and pé
to achieve symmetrical definitions.

‘We have compared the effects of the chromatic and white/black-
achromatic top-hats for adapting the median filter. Both the color
gradients and color top-hats are thresholded in order to build the
corresponding binary maps.

Experimental results and comparison to vec-
tor filters

Fig. 3 shows the effects of such a filter when using the previ-
ous different methods for contour detection on the original image
of Fig. 1. The intermediate contour images have been thresh-
olded at 30 in every case in order to obtain the contour map. We
can note the main differences between the filtered images and the
degradation of the original image around the letters.

Elements of comparison

Several values are going to be used in order to evaluate the
efficiency of the filters under study. First of all, the mean absolute
error (MAE) and the mean square error (MSE) are estimated,
as well as the normalized color difference (NCD) and the peak
signal-to-noise ratio (PSNR) [7][8][1][9].
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Experimental results for the spatially adaptive fil-
ter

Firstly, let us have a look to experimental results of the spa-
tially adaptive filter.

Results for spatially adaptive median filtering using the bit-
mixing paradigm and a color difference map

Threshold | MAE MSE NCD | PSNR
5 0.150 0.229 0.003 | 94.784
15 0.775 2.955 0.010 | 72.845
25 1.498 8.724 | 0.015 | 62.740
35 2.220 | 16.985 | 0.020 | 56.537
45 3.097 | 32.015 | 0.025 | 50.730
55 3.929 | 49.581 | 0.029 | 46.675
65 4.959 | 77.802 | 0.034 | 42.143
75 5.948 | 109.678 | 0.039 | 39.099
85 7.224 | 163.397 | 0.044 | 35.457
95 9.175 | 264.515 | 0.053 | 30.741

Results for spatially adaptive median filtering using the bit-
mixing paradigm and achromatic top-hat contours

Threshold | MAE MSE NCD | PSNR
5 2.153 39.840 | 0.015 | 50.232
10 2.977 | 53.587 | 0.021 | 47.048
15 3.680 66.534 | 0.025 | 44.740
20 4.248 77.707 | 0.029 | 43.010
25 4.754 | 89.260 | 0.032 | 41.482
30 5.282 | 103.345 | 0.035 | 39.972
35 5.843 | 121.015 | 0.030 | 38.330
40 6.385 | 140.860 | 0.041 | 36.866
45 6.878 | 160.092 | 0.043 | 35.656
50 7.323 | 177.788 | 0.045 | 34.653
55 7.859 | 201.704 | 0.047 | 33.379
60 8.357 | 226.985 | 0.049 | 32.259
65 8.782 | 248.402 | 0.051 | 31.374
70 9.157 | 267.089 | 0.053 | 30.645
75 9.636 | 291.873 | 0.055 | 29.770
80 10.191 | 322.319 | 0.050 | 28.782
85 10.817 | 358.247 | 0.061 | 27.735
90 11.025 | 369.408 | 0.062 | 27.467
95 11.244 | 381.575 | 0.062 | 27.205

100 11.468 | 394.424 | 0.063 | 26.929

Median filter using a bit-mixing paradigm

Directly inspired by the gray scale median filter this ap-
proach requires a total order on the set of gray levels for the
computation of the median value. Actually, as there exists no
such total order for color vectors, a bit-mixing paradigm is used
to provide a sequence on any window W [4]. Let us consider a
scalar value k; associated with each color vector x; of W. For

389



c

Figure 3. Spatially adaptive median filter with contour detection by a) color difference b) gradient Lab, ¢) achromatic top hat and d) gradient LSH.

Results for spatially adaptive median filtering using the bit- Results for spatially adaptive median filtering using the bit-
mixing paradigm and chromatic top-hat contours mixing paradigm and Lab gradient
Threshold | MAE MSE NCD PSNR Threshold | MAE MSE NCD PSNR
5 1.249 22.752 | 0.009 | 56.333 5 0.100 0.111 0.002 | 99.922
10 2.132 34.466 | 0.016 | 51.759 10 0.491 1.655 0.006 | 78.164
15 2.871 46.245 .021 48.545 15 1.046 5.889 0.010 | 66.731
20 3.526 58.102 | 0.025 | 46.092 20 1.837 16.783 | 0.015 | 57.463
25 4.153 72.418 | 0.029 | 43.794 25 3.041 42.646 | 0.021 | 48.645
30 4.785 87.844 | 0.032 | 41.753 30 4.613 88.060 | 0.028 | 41.658
35 5.455 108.415 | 0.036 | 39.599 35 6.937 | 182.653 | 0.040 | 34.545
40 6.102 130.596 | 0.039 | 37.721 40 9.180 | 288.807 | 0.051 | 30.003
45 6.643 150.682 | 0.042 | 36.338 45 10.517 | 359.751 | 0.056 | 27.995
50 7.138 169.926 | 0.044 | 35.175 50 11.713 | 427;522 | 0.061 | 26.389
55 7.641 192.842 | 0.046 | 34.017 55 12.201 | 452.559 | 0.064 | 25.833
60 8.103 | 214.554 | 0.048 | 32.993 60 12.465 | 466.381 | 0.065 | 25.547
65 8.506 | 235.010 | 0.050 | 32.109 65 12.555 | 471.606 | 0.066 | 25.435
70 8.793 | 248.381 | 0.051 | 31.557 70 12.577 | 472.797 | 0.066 | 25.412
75 9.205 | 269.811 | 0.053 | 30.759 75 12.577 | 472.797 | 0.066 | 25.412
80 9.652 | 293.814 | 0.055 | 29.909 80 12.577 | 472.797 | 0.066 | 25.412
85 10.090 | 317.236 | 0.056 | 29.146 85 12.577 | 472.797 | 0.066 | 25.412
90 10.405 | 333.055 | 0.058 | 28.624 90 12.577 | 472.797 | 0.066 | 25.412
95 10.816 | 356.203 | 0.059 | 27.985 95 12.577 | 472.797 | 0.066 | 25.412
100 11.346 | 386.813 | 0.062 | 27.150 100 12.577 | 472.797 | 0.066 | 25.412

yi. Then the bit-mixing filter value, BMF (W), is given by:
example, if x; is an RGB vector represented by 3 bytes, k; is a
24-bit integer value as shown in Fig. 4. BMF(W) = xy (6)

The values k; are arranged in order. Afterwards, vectors x;
are sorted according to values k; to obtain a set of ordered vectors such that xpy =y Nl
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Results for spatially adaptive median filtering using the bit-
mixing paradigm and LSH gradient

Results for vector median filtering for norm L,

Window size MAE MSE NCD PSNR
Threshold MAE MSE NCD PSNR 1 2.649 53.844 0.016 | 47.635
5 0.089 0.082 0.002 | 102.253 2 5.215 126.877 | 0.029 | 38.879
10 0.352 0.827 0.006 | 84.753 3 8.314 | 254.103 | 0.044 | 31.932
15 0.697 2.706 0.009 74.658 4 10.453 | 370.853 | 0.055 | 28.013
20 1.088 5.778 0.012 | 67.668 5 12.197 | 457.836 | 0.065 | 25.605
25 1.550 10.898 | 0.015 61.817
30 2.140 20.701 0.018 56.091
35 2.885 38.295 0.022 50.475 Results for vector median filtering for norm L,
40 3.736 59.401 0.026 | 46.187
45 4545 | 79.362 | 0.030 | 43.287 Windowsize | MAE | MSE | NCD | PSNR
50 5.225 | 96.455 | 0.033 | 41.344 1 2.426 | 53.562 | 0.012 | 48.066
55 5.976 | 118.486 | 0.037 | 39.300 2 4.877 | 125.745 | 0.023 | 39.530
60 6.799 | 147.918 | 0.040 | 37.173 3 7.886 | 250.960 | 0.036 | 32.574
65 7.652 | 182.861 | 0.044 | 35.118 4 9.957 | 361.764 | 0.045 | 28.837
70 8.578 224.178 | 0.047 | 33.096 5 11.584 | 450.529 | 0.053 | 26.556
75 9.446 | 275.836 | 0.050 | 31.149
80 10.179 | 323.139 | 0.053 | 29.607 R o
85 10.755 | 357.586 | 0.056 28,561 esults for vector median filtering for norm L;
90 11.230 | 305.095 | 0.058 | 27.746 Window size MAE MSE NCD PSNR
95 12.042 | 438.291 | 0.063 | 26.296 1 5458 54.011 0012 | 47.993
100 12.498 | 466.932 | 0.065 | 25.531 > 4.926 127501 | 0.024 | 39420
3 7.981 255.824 | 0.036 | 32.423
4 10.107 | 372.641 | 0.045 | 28.625
R=1y 1y 15 b4 Is g 7 B ="y by b by big b by by 5 11.716 | 458.866 | 0.052 | 26.447

ky = 1oty mobars mhaty oybats sohste g batr o beta g by
Figure 4. Bit-mixing paradigm.

Results for median filtering using the bit-mixing paradigm

Window size MAE MSE NCD PSNR
1 2.804 56.102 | 0.017 | 47.167
2 5.508 | 134.226 | 0.031 | 38.321
3 8.783 | 267.689 | 0.047 | 31.415
4 11.200 | 396.631 | 0.059 | 27.353
5 13.216 | 497.212 | 0.070 | 24.922

Vector median filter
A distance measure D; is associated with each vector x;:

N

Di=Y |lxi—xjlle @)

Jj=1

for i = 1..N, where ||x; —x;||z is the distance between x; and
x;j regarding the L-norm. Then the vector median filter value,
VMF (W), is given by:

VMF (W) =xy ®

such that Dy = min;—1_nD;.

Basic vector directional filter
An angular measure ¢; is associated with each vector x;:

N
o = ZA(X,’,X]') ©
=1
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for i = 1..N, where A(x;,x;) is the scalar value representing the
angle between x; and x;. Then the basic vector directional filter
value, BVDF (W), is given by:

BVDF (W) = xy (10)
such that oy = minj—; n .

Results for vector directional median filtering

Window size | MAE MSE NCD | PSNR
1 3.477 | 90.061 | 0.015 | 43.189
2 7.162 | 237.515 | 0.031 | 33.561
3 10.781 | 444.525 | 0.045 | 27.263
4 13.085 | 589.154 | 0.055 | 24.352
5 15.021 | 732.356 | 0.064 | 22.063

Directional distance filter
A scalar value Q;, mixing distance and angular measures, is
associated with each vector x;:

Qi =D/ ®.q? (11)

fori=1..N. Thus:

N -0 N [
Q,': <Z|xi—xj||L> .<ZA(X,’,X]')> (12)
j=1 j=1

where o is a power value ranged from O to 1 that modulates the
relative influence of D; and ¢; in the calculus. Then the direc-
tional distance filter value, DDF (W), is given by:

DDF (W) = xy (13)

such that Qy = minj—; _yQi.
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Results for vector directional median filtering for norm L,

Results for vector directional median filtering for norm L,

Windowsize [0} MAE MSE NCD PSNR Windowsize 0] MAE MSE NCD | PSNR
1 0.10 | 0.126 0.306 0.002 | 95.740 1 0.10 | 0.216 0.743 0.003 | 88.296
2 0.10 | 0.124 0.245 0.002 | 97.278 2 0.10 | 0.233 0.679 0.003 | 88.766
3 0.10 | 0.112 0.232 0.002 | 98.032 3 0.10 | 0.242 0.810 0.003 | 87.688
4 0.10 | 0.093 0.225 0.002 | 98.922 4 0.10 | 0.211 0.734 0.003 | 88.684
5 0.10 | 0.074 0.191 0.001 | 100.848 5 0.10 | 0.178 0.610 0.003 | 90.360
1 0.20 | 1.148 15.537 | 0.007 | 60.265 1 0.20 | 1.928 41.835 | 0.009 | 50.728
2 0.20 | 1.075 9.231 0.008 | 64.701 2 0.20 | 1.989 27.902 | 0.012 | 54.375
3 0.20 | 1.075 9.758 0.009 | 64.275 3 0.20 | 2.247 37.856 | 0.014 | 51.445
4 0.20 | 1.034 9.908 0.009 | 64.213 4 0.20 | 2.243 44.833 | 0.014 | 49.916
5 0.20 | 1.077 13.233 | 0.009 | 61.668 5 0.20 | 2.220 48.363 | 0.014 | 49.225
1 0.30 | 2.401 54.646 | 0.011 | 47.940 1 0.30 | 2.396 54.786 | 0.011 | 47.932
2 0.30 | 4.927 | 127.374 | 0.023 | 39.448 2 0.30 | 4.946 | 128.299 | 0.023 | 39.410
3 0.30 | 7.834 | 248.867 | 0.036 | 32.716 3 0.30 | 7.978 | 254.833 | 0.036 | 32.501
4 0.30 | 9.486 | 338.853 | 0.043 | 29.518 4 0.30 | 10.060 | 366.095 | 0.045 | 28.791
5 0.30 | 10.629 | 406.250 | 0.049 | 27.592 5 0.30 | 11.580 | 455.053 | 0.052 | 26.529
1 0.40 | 2.409 55.705 | 0.011 | 47.779 1 0.40 | 2.405 55.974 | 0.011 | 47.749
2 0.40 | 4.957 | 128.536 | 0.023 | 39.381 2 0.40 | 4.968 | 128.939 | 0.023 | 39.371
3 0.40 | 8.030 | 257.710 | 0.036 | 32.393 3 0.40 | 8.049 | 258.954 | 0.036 | 32.359
4 0.40 | 10.172 | 372918 | 0.046 | 28.611 4 0.40 | 10.206 | 374.706 | 0.046 | 28.576
5 0.40 | 11.787 | 467.987 | 0.053 | 26.249 5 0.40 | 11.825 | 470.056 | 0.053 | 26.219
1 0.50 | 2.421 56.924 | 0.011 | 47.596 1 0.50 | 2.421 57.165 | 0.011 | 47.566
2 0.50 | 4.981 128.998 | 0.023 | 39.361 2 0.50 | 4.989 | 129.554 | 0.023 | 39.334
3 0.50 | 8.098 | 261.523 | 0.036 | 32.264 3 0.50 | 8.127 | 263.118 | 0.036 | 32.216
4 0.50 | 10.223 | 376.358 | 0.046 | 28.535 4 0.50 | 10.269 | 378.591 | 0.046 | 28.484
5 0.50 | 11.877 | 475.833 | 0.053 | 26.100 5 0.50 | 11.912 | 477.828 | 0.053 | 26.060
1 0.60 | 2.436 57.451 0.011 | 47.517 1 0.60 | 2.441 57.845 | 0.011 | 47.457
2 0.60 | 5.031 131.846 | 0.023 | 39.167 2 0.60 | 5.047 | 132.786 | 0.023 | 39.108
3 0.60 | 8.174 | 266.443 | 0.036 | 32.100 3 0.60 | 8.199 | 268.160 | 0.036 | 32.050
4 0.60 | 10.300 | 382.094 | 0.046 | 28.398 4 0.60 | 10.356 | 385.375 | 0.046 | 28.323
5 0.60 | 11.999 | 487.246 | 0.053 | 25.874 5 0.60 | 12.033 | 488.982 | 0.054 | 25.840
1 0.70 | 2.483 59.182 | 0.011 | 47.236 1 0.70 | 2.490 59.408 | 0.012 | 47.202
2 0.70 | 5.136 | 137.020 | 0.024 | 38.813 2 0.70 | 5.154 | 137.824 | 0.024 | 38.765
3 0.70 | 8.268 | 273.131 | 0.037 | 31.875 3 0.70 | 8.298 | 274.854 | 0.037 | 31.821
4 0.70 | 10.412 | 390.553 | 0.046 | 28.198 4 0.70 | 10.442 | 392.264 | 0.046 | 28.162
5 0.70 | 12.101 | 496.856 | 0.054 | 25.686 5 0.70 | 12.132 | 498.679 | 0.054 | 25.648
1 0.80 | 2.601 62.948 | 0.012 | 46.650 1 0.80 | 2.613 63.297 | 0.012 | 46.599
2 0.80 | 5.325 | 146.149 | 0.024 | 38.210 2 0.80 | 5.334 | 146.561 | 0.024 | 38.188
3 0.80 | 8.419 | 283.375 | 0.037 | 31.534 3 0.80 | 8.446 | 285.228 | 0.037 | 31.474
4 0.80 | 10.528 | 401.573 | 0.047 | 27.946 4 0.80 | 10.559 | 403.850 | 0.047 | 27.899
5 0.80 | 12.218 | 513.565 | 0.054 | 25.370 5 0.80 | 12.266 | 516.819 | 0.054 | 25.308
1 0.90 | 2.872 71.338 | 0.013 | 45.450 1 0.90 | 2.883 71.630 | 0.013 | 45.411
2 0.90 | 5.646 | 161.299 | 0.025 | 37.277 2 0.90 | 5.662 | 161.718 | 0.025 | 37.254
3 0.90 | 8.709 | 304.702 | 0.038 | 30.857 3 0.90 | 8.738 | 306.838 | 0.038 | 30.792
4 0.90 | 10.778 | 425.866 | 0.047 | 27.409 4 0.90 | 10.804 | 428.042 | 0.047 | 27.362
5 0.90 | 12.513 | 543.438 | 0.055 | 24.838 5 0.90 | 12.544 | 545.675 | 0.055 | 24.801

Conclusion
Interpretation In this paper we have presented several alternative meth-

All these error estimations show that the spatially adaptive

filter gives better results than vector methods, whatever the con-
tour detection method is. Furthermore, color gradient methods
best score on the particular image under study.
For the Lab gradient, we can see that we obtain the same error
results for the threshold value varying from 70 to 100. That is be-
cause the maximal value on the Lab gradient image is less than
70. In this way the thresholded gradient image is the same for all
threshold values greater than 70.
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ods to implement a spatially adaptive median filter. The main
difference between the alternative methods is the method used
to detect color contours. In the primary method a color differ-
ence map based on the Euclidean distance between colors was
used. In this paper we have taken into account more sophisticated
methods such as color gradient or top-hats. Each of these alter-
native methods have been tested on a particular image. Results
are slightly different when comparing error estimations such as
mean absolute error, mean square error, normalized color differ-
ence or peak signal-to-noise ratio. Nevertheless scores are better
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Results for vector directional median filtering for norm L;

Windowsize () MAE MSE NCD | PSNR
1 0.10 | 0.258 1.015 0.003 | 85.554
2 0.10 | 0.272 0.857 0.004 | 86.732
3 0.10 | 0.287 1.027 0.004 | 85.509
4 0.10 | 0.262 1.007 0.003 | 85.865
5 0.10 | 0.230 0.924 0.003 | 86.750
1 0.20 | 2.107 | 47.457 | 0.010 | 49.456
2 0.20 | 2.370 | 37.865 | 0.013 | 51.487
3 0.20 | 2.805 | 55.077 | 0.016 | 47.848
4 0.20 | 2.776 | 62.807 | 0.016 | 46.648
5 0.20 | 2.745 | 65.285 | 0.016 | 46.292
1 0.30 | 2.399 | 55.055 | 0.011 | 47.889
2 0.30 | 4.953 | 128.578 | 0.023 | 39.397
3 0.30 | 7.997 | 255.466 | 0.036 | 32.487
4 0.30 | 10.126 | 369.523 | 0.045 | 28.706
5 0.30 | 11.690 | 459.443 | 0.052 | 26.428
1 0.40 | 2.402 | 56.126 | 0.011 | 47.732
2 0.40 | 4974 | 129.221 | 0.023 | 39.356
3 0.40 | 8.066 | 259.629 | 0.036 | 32.341
4 0.40 | 10.227 | 375.957 | 0.046 | 28.546
5 0.40 | 11.841 | 470.257 | 0.053 | 26.204
1 0.50 | 2.426 | 57.326 | 0.011 | 47.539
2 0.50 | 5.002 | 130.337 | 0.023 | 39.282
3 0.50 | 8.135 | 263.462 | 0.036 | 32.213
4 0.50 | 10.290 | 379.703 | 0.046 | 28.456
5 0.50 | 11.931 | 478.201 | 0.053 | 26.040
1 0.60 | 2.446 | 58.082 | 0.011 | 47.420
2 0.60 | 5.064 | 133.379 | 0.023 | 39.072
3 0.60 | 8.207 | 268.655 | 0.036 | 32.036
4 0.60 | 10.374 | 386.374 | 0.046 | 28.300
5 0.60 | 12.048 | 489.480 | 0.054 | 25.818
1 0.70 | 2.495 | 59.584 | 0.012 | 47.175
2 0.70 | 5.163 | 138.333 | 0.024 | 38.732
3 0.70 | 8.314 | 275.574 | 0.037 | 31.796
4 0.70 | 10.454 | 393.112 | 0.046 | 28.144
5 0.70 | 12.156 | 500.286 | 0.054 | 25.613
1 0.80 | 2.621 63.556 | 0.012 | 46.561
2 0.80 | 5.340 | 146.845 | 0.024 | 38.170
3 0.80 | 8.461 | 286.202 | 0.037 | 31.443
4 0.80 | 10.566 | 404.549 | 0.047 | 27.884
5 0.80 | 12.277 | 516.354 | 0.054 | 25.312
1 0.90 | 2.887 71.812 | 0.013 | 45.387
2 0.90 | 5.671 | 162.199 | 0.025 | 37.227
3 0.90 | 8.755 | 307.880 | 0.038 | 30.761
4 0.90 | 10.821 | 429.301 | 0.047 | 27.335
5 0.90 | 12.549 | 545.601 | 0.055 | 24.800

than the ones obtained for vector filtering methods. We have now
to validate our algorithm on a large database of images, in order
to study links between contour detection and filtering efficiency.
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