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Abstract

Category recognition is important to access visual informa-
tion on the level of objects. A common approach is to compute
image descriptors first and then to apply machine learning to
achieve category recognition from annotated examples. As a con-
sequence, the choice of image descriptors is of great influence on
the recognition accuracy. So far, intensity-based (e.g. SIFT) de-
scriptors computed at salient points have been used. However,
color has been largely ignored. The question is, can color infor-
mation improve accuracy of category recognition?

Therefore, in this paper, we will extend both salient point
detection and region description with color information. The ex-
tension of color descriptors is integrated into the framework of
category recognition enabling to select both intensity and color
variants. Our experiments on an image benchmark show that
category recognition benefits from the use of color. Moreover,
the combination of intensity and color descriptors yields a 30%
improvement over intensity features alone.

Introduction

Automatic object category recognition is important to ac-
cess visual information on the level of objects (buildings, cars,
etc.). A common approach for systems in image retrieval [6, 13,
15, 16] is to compute image descriptors first and then to apply
machine learning to achieve object recognition from annotated
examples. As a consequence, the choice of image descriptors is
of great influence on the recognition accuracy. So far, intensity-
based (e.g. SIFT) descriptors [8, 16] computed at salient points
have been used. However, color plays an important role in dis-
tinguishing different types of objects. Therefore, we believe the
addition of color information can boost performance.

The aim of this paper is to study the influence of color by ex-
tending both salient point detection and region description with
color. First, the Harris corner detector [5] and Laplacian scale
selection are extended for multiple channels. Then, the saliency
of image features is increased by applying color saliency boost-
ing [14]. For region description, we consider several color exten-
sions of the state-of-the-art SIFT descriptor [8], which is based
on intensity information only. Both salient point detection and
region description are extended with color information accord-
ing to the following criteria: 1. invariance to illumination 2. high
discriminate power 3. easy to compute. We propose to extend
the object recognition framework with color descriptors, which
enables the framework to select both intensity and color variants.
We hypothesize that color information improves the accuracy of
category recognition.

To evaluate the performance of our color extensions, we use
a widely adopted benchmark for object category recognition, the
PASCAL VOC Challenge 2007 [2]. This benchmark consists
of nearly 10,000 photographs, containing one or more of the 20
object categories defined on this dataset. See figure 1 for an
overview of the evaluated object categories.
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Figure 1. Object categories of the PASCAL VOC Challenge 2007.

Point Detectors
In this section, two scale invariant salient point detectors are

discussed: Harris-Laplace and ColorHarris-Laplace with color
boosting. Both are based on the Harris corner detector and use
Laplacian scale selection [11].

Harris Corner Detector
To extend the Harris corner detector to color information,

the intensity-based version is taken. The adapted second moment
matrix for position x is defined as follows [10]:

µ(x,σI ,σD) = σ
2
Dg(σI)

(
L2

x(x,σD) LxLy(x,σD)
LxLy(x,σD) L2

y(x,σD)

)
, (1)

with σI the integration scale, σD is the differentiation scale and
Lz(x,σD) the derivative computed in the z direction at point x
using differentiation scale σD. The matrix describes the gra-
dient distribution in the local neighborhood of point x. Local
derivatives are computed by Gaussian kernels with a differenti-
ation scale denoted by σD. The derivatives are averaged in the
neighborhood of point x by smoothing with a Gaussian window
suitable for the integration scale σI .

The eigenvalues of the second moment matrix represent the
two principal signal changes in the neighborhood of a point.
Salient points are extracted where both eigenvalues are signifi-
cant i.e. the signal change is significant in orthogonal directions,
which is true for corners, junctions, etc.

The Harris corner detector [5] relies on the properties of the
second moment matrix. It combines the trace and the determi-
nant of the matrix into a cornerness measure:

cornerness = det(µ(x,σI ,σD))−κtrace2(µ(x,σI ,σD)), (2)

with κ an empirical constant with values between 0.04 and 0.06.
Local maxima of the cornerness measure (equation 2) determine
the salient point locations.

Scale Selection
Automatic scale selection allows for the selection of the

characteristic scale of a point, which depends on the local struc-
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ture around the point. The characteristic scale is the scale for
which a given function attains a maximum over scales. It has
been shown [9] that the cornerness measure of the Harris corner
detector rarely attains a maximum over scales. Thus, it is not
suitable for selecting a proper scale. However, the Laplacian-of-
Gauss (LoG) does attain a maximum over scales. Therefore, it
will be used in this paper. With σn, the scale parameter of the
LoG, it is defined for a point x as:

|LoG(x,σn)|= σ
2
n |Lxx(x,σn)+Lyy(x,σn)|. (3)

The function reaches a maximum when the size of the kernel
matches the size of the local structure around the point.

Harris-Laplace Detector
The Harris-Laplace detector uses the Harris corner detector

to find potential scale-invariant salient points. It selects a subset
of these points for which the LoG reaches a maximum over scale.
Mikolajczyk and Schmid [10] define an iterative version of the
Harris-Laplace detector and a simplified version which does not
involve iteration. The simplified version performs a more thor-
ough search through the scale space by using smaller intervals
between scales. The iterative version relies on its convergence
property to obtain characteristic scales. Both versions give com-
parable results on our dataset, so we have chosen the simplified
version for the Harris-Laplace detector.

Color Boosting
From information theory it is known that rare color transi-

tions in an image are very distinctive. By adapting the Harris
detector to the saliency of an image, the focus of the detector
shifts to more distinctive points. The transformation of the im-
age to achieve this is called color saliency boosting. We use the
color boosting transformation in the opponent color space [14].
The opponent space is given by: O1

O2
O3

=


R−G√

2
R+G−2B√

6
R+G+B√

3

 . (4)

The third channel O3 is equal to the intensity channel of the
HSV color model, subject to a scaling factor. O1 and O2 contain
the red-green and yellow-blue opponent pairs.

The color boosting transformation is a weighing of the indi-
vidual opponent channels: (0.850 ·O1,0.524 ·O2,0.065 ·O3)T ,
where the sum of the squared weights is equal to 1. Note that
these weights are focused on the red-green and yellow-blue op-
ponent pairs, with almost no weight given to the intensity channel
O3.

ColorHarris-Laplace Detector
To extend the Harris detector to multiple channels m, a

vector-based version is obtained where Lx is substituted by a vec-

tor ~fx =
(

LC1
x ,LC2

x , . . . ,LCm
x

)T
with Ci the ith channel. The prod-

uct between derivatives is substituted by a vector inproduct. If
the vector is 1-D (e.g. an intensity image), this is equivalent to
the original second moment matrix. The second moment matrix
for the ColorHarris corner detector is:

µColorHarris(x,σI ,σD) =

σ
2
Dg(σI)

(
~fx(x,σD) ·~fx(x,σD) ~fx(x,σD) ·~fy(x,σD)
~fx(x,σD) ·~fy(x,σD) ~fy(x,σD) ·~fy(x,σD)

)
,

(5)

with ~fx =
(

LC1
x ,LC2

x , . . . ,LCm
x

)T
for an image with channels

{C1,C2 . . .Cm}, with LCi
x being the Gaussian derivative of the ith

image channel Ci in direction x. The image channels Ci can be in-
stantiated to channels of any color model, such as RGB, opponent
color model, etc. It is also possible to first apply preprocessing
operations (such as color boosting) to an image and instantiate
the channels afterwards. For our ColorHarris corner detector, we
instantiate the channels to the R, G and B channels of the standard
RGB color space. We preprocess images using color boosting as
discussed above.

The LoG kernel is extended to operate on multiple channels
by summing the m individual channels:

|LoG(x,σn)|=
m

∑
i=1
|LoGCi(x,σn)|. (6)

Region Descriptors
In this section we will discuss the region descriptors used to

describe the image region around the points obtained using the
point detectors from the previous section. Our main goal in this
section is to extend region description with color information, as
to improve the discriminate power of region descriptors.

SIFT
SIFT as originally proposed by Lowe [7] consists of both

a scale invariant point detector and a region descriptor. The de-
tector gives results similar to the Harris-Laplace detector: scale
invariant points are detected on corners in an image. We will use
the SIFT descriptor only, which describes the local shape of the
region around the salient point using edge histograms. It uses in-
formation from the intensity channel only. We compute the SIFT
descriptor with a 4x4 grid and 8 bins.

OpponentSIFT
The SIFT descriptor uses only information from the inten-

sity channel. A natural extension is to include the opponent color
space. In this way, we decompose the opponent color space into
three channels (equation 4), each described using a SIFT descrip-
tor. The information in the O3 channel is equal to the intensity
information, while the other channels describe the color informa-
tion in the image. However, these other channels do contain some
intensity information: hence they are not invariant to changes in
light intensity. We term this descriptor OpponentSIFT.

WSIFT
In the opponent color space the red-green and yellow-blue

channels (O1 and O2) still contain some intensity information. To
add invariance to intensity changes, [3] proposes the W invariant
which eliminates the intensity information from these channels.
Therefore, the description of these two channels is invariant to
light intensity changes. This descriptor is termed WSIFT [1].

rgSIFT
In the normalized RGB color model, the chromacity compo-

nents r and g describe the color information in the image, while
being invariant to light intensity changes, shadows and shad-
ing [4]. For the rgSIFT descriptor, we add descriptors for the
r and g chromaticity components.

Experimental Setup
The PASCAL Visual Object Classes (VOC) Challenge [2]

provides a yearly benchmark for comparison of object classi-
fication systems. Evaluation outside the yearly cycle is possi-
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Figure 2. Overview of the object category recognition pipeline. In the first stage, points are detected in the image, using either Harris-Laplace or ColorHarris-

Laplace. In the color descriptor extraction stage, color features are extracted around every sampled point. Next, the color descriptors of an image are reduced

to a set of 40 descriptors using k-means clustering. These 40 descriptors are retained, together with a weight indicating the number of original descriptors

closest to them. The cluster sets for every image form the input to the SVM classifier, which outputs an object category likelihood score for the image.

Combinations of different color features are possible during the learning stage. The focus of this paper lies on the point detection strategy and the color

descriptors.

ble because the whole dataset and ground truth annotations are
made publicly available. The PASCAL VOC Challenge 2007
dataset contains 10,000 images of 20 different object categories,
e.g. bird, bottle, car, dining table, motorbike and people. See
figure 1 for a complete overview of the object categories.

Our experimental pipeline, shown in figure 2, learns object
appearance models from region descriptors. In the first stage,
points are detected in the image, using either Harris-Laplace or
ColorHarris-Laplace. In the color descriptor extraction stage,
color features are extracted around every sampled point. Next,
the color descriptors of an image are reduced to a set of 40 de-
scriptors using k-means clustering, to significantly speedup pro-
cessing in the rest of the pipeline. These 40 descriptors are re-
tained, together with a weight indicating the number of orig-
inal descriptors closest to them. The Earth Movers Distance
(EMD) [12] has been shown to be very suitable for measuring
the similarity between cluster sets [16]. The EMD distance be-
tween the cluster sets of different images is used in Support Vec-
tor Machine (SVM) learning algorithm. To incorporate the EMD
distance D(S1,S2) between two cluster sets S1 and S2 into the
SVM, the distance needs to be transformed into the EMD kernel:

K(S1,S2) = exp
(
− 1

A
D(S1,S2)

)
, (7)

where A is a normalization factor equal to the mean value of the
EMD distances of all images. Combinations of features can be
constructed by summing their normalized EMD distances. To
constrain this sum to lie between 0 and 1, it should be divided
by the number of features combined. The trained SVM classifier
outputs object category likelihood scores.

To allow for a fair comparison between point detectors, we
assure that both point detectors output, on average, the same
number of points per image.

Results
We show the overall performance of the intensity point de-

tector, Harris-Laplace, its color extension, ColorHarris-Laplace,
and the intensity-based SIFT descriptor and several color de-
scriptors in figure 3. We observe that ColorHarris-Laplace does
not perform better than Harris-Laplace. However, given that
ColorHarris-Laplace triggers on very different structures in the
image, it should be complementary to Harris-Laplace in terms
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Figure 3. Mean Average Precision performance over all 20 object cate-

gories on the PASCAL VOC Challenge 2007 dataset.

of discriminative power. Our results using combinations of both
Harris-Laplace and ColorHarris-Laplace, also shown in figure 3,
confirm this. The combination of point detectors outperforms the
individual detectors.

From the results for the different color descriptors, we ob-
serve that the color SIFTs perform better than normal intensity-
based SIFT. However, the question is how this maps onto the in-
dividual object categories: which objects need color? Therefore,
we depict in figure 4 a detailed view of figure 3 over individual
object categories. Only the best results from figure 3 are shown,
i.e. the results for the combination of point detectors.

From figure 4, we derive that color descriptors provide a
clear improvement for bird, dining table, horse, motorbike, per-
son and potted plant. We observe that the green surroundings of
the object (tree leaves or grass) discriminate between false posi-
tives and real objects, especially for birds and horses. For dining
tables, motorbikes, people and potted plants the color of the ob-
ject itself is discriminative: furniture is brown, red motorbikes
are common, people have similar skin color and potted plants are
mostly green. From these results, we see that the best descriptor
depends on the object category.

Given that the best descriptor depends on the object cate-
gory, we believe a descriptor selection strategy on a per-category
basis could improve performance further. Our belief is strength-
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Figure 4. Average Precision performance of the object categories on the PASCAL VOC 2007 dataset for different color descriptors using the combination of

point detectors, consisting of both Harris-Laplace and ColorHarris-Laplace. This combination of point detectors was the best in figure 3.

end by an experiment using our simple combination scheme. In
this experiment, a combination of all color descriptors using both
Harris-Laplace and ColorHarris-Laplace is used, resulting in a
MAP of 0.503. This is an improvement of 30% over Harris-
Laplace with intensity-based SIFT alone.

Conclusion
In this paper we study the influence of color on salient point

detection and description for the purpose of object recognition
in images. Our experiments on a real-world image dataset show
that object recognition benefits from the use of color. Using color
in point detection and color region descriptors yields a 30% per-
formance improvement over using intensity information only.
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