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Abstract
Colour has proved to be a very powerful feature for image

indexing. There are many examples of image retrieval systems
based on colour or chromaticity histograms in the literature, fol-
lowing on from the histogram intersection method of Swain and
Ballard. Here we propose a compact representation of the chro-
maticity histogram that achieves very good performance in im-
age retrieval. Specifically, we use a new type of polynomial inter-
polation in two variables, which relies on the Padua points as in-
terpolation nodes. What we obtain is a vector of coefficients, that
represents the interpolation polynomial and is “characteristic”
for an image, and that can be compared to the corresponding
vectors of other images. Experiments show that our new com-
pact Padua point representation supports excellent indexing and
recognition.

Introduction
The increased storage capacity together with the large dif-

fusion of digital photography makes it possible to produce and
store huge amounts of pictures. This is true not only for very
large on-line image archives, but also for end users who own a
modern personal computer: a consumer digital camera can easily
store hundreds of images in its internal memory, therefore users
tend not to pay attention to the number of pictures taken. The
result is the production of several gigabytes of personal photos
in a few months, where it’s hard to locate individual pictures un-
less an effort has been made from the very beginning to properly
index them. When it comes to on-line services where the sub-
scribers can upload their own pictures to share them with other
people, the same issue grows exponentially.

A very common strategy adopted to ease the search within
such archives is tagging the pictures with a text label or descrip-
tion, but this requires time-consuming work to be performed by
a human operator. In the case of on-line services, this task is
usually left to the person who publishes the pictures: a drawback
of this is that users might use inappropriate labels which might
cause false search results. For these reasons it is desirable to pro-
duce an automated system that, given an example image, returns
a collection of similar images.

Several cues can be used to index images, and colour has
proven to be a very powerful feature for this task, especially in
the form of colour and chromaticity histograms. Although in
complex scenes these features might not, on their own, provide
high accuracy, very fast algorithms can use them in order to nar-
row down the search for other more accurate, yet slower, algo-
rithms that can also utilize other cues.

In this paper we propose a compact representation of the
chromaticity histogram of an image, based on a new type of
polynomial interpolation called Padua points interpolation. The
approximation we obtain is univocally described by a vector of
coefficients, that is “characteristic” for an image and therefore
can be used for the indexing task. In this paper we first we intro-
duce the Padua points and we describe their main features. Then,

we propose our algorithm for indexing and retrieval of images;
finally, we show our results in comparison with other histogram-
based methods.

The Padua points
The problem of polynomial interpolation in two variables

has been approached in a number of different ways. In an inter-
polation scheme, one would like to find some features that fa-
cilitate good performance. First of all, the approximation error
should be low; it is bounded by a measure called the Lebesgue
constant, which grows with the interpolation degree. It is obvi-
ously desirable that this growth be slow and it has been proven to
be at least of O(logn) in the case of interpolation in one variable,
and of O(log2 n) in two variables, where n is the interpolation
degree [4]. Last but not least, the computational efficiency of the
interpolation scheme should be as high as possible.
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Figure 1. Padua points of the first family of interpolation degree n = 5 and

their generating curve as in equation (2).

Although there are many examples of nodes that guarantee
unisolvence and a minimal growth of the Lebesgue constant for
interpolation in one variable, for interpolation in two variables
only recently has a set of points been introduced that meets both
these criteria. These points are called Padua points (see [5]), af-
ter the Italian university where they were first discovered. Up to
now, they are the only known points that guarantee unisolvence
(i.e. their interpolating polynomial is unique) and have a proven
minimal growth of the Lebesgue constant of O(log2 n) for inter-
polation in two variables (cf. [2, 3]).

The Padua points are defined in the square [−1,1] ×
[−1,1] ⊂ R

2 (but they can be easily mapped to any rectangular
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domain) as the union of two grids of Chebyshev points. Given
the interpolation degree n, we have N = 1

2 (n + 1)(n + 2) points
defined as

Padn = {ξξξ = (ξ1,ξ2)}

=
{

γ
(

kπ
n(n+1)

)
, k = 0, . . . ,n(n+1)

}
,

(1)

where γ(t) is their generating curve [2]. There are four families
of Padua points, obtained with subsequent 90 degree rotations of
the following curve:

γ(t) = (−cos((n+1)t),−cos(nt)) t ∈ [0,π]. (2)

Two of the points lie on consecutive vertices of the square, 2n−1
points lie on the edges of the square, and the interior points lie
on the self-intersections of the generating curve (see figure 1).

There are two features of the Padua points which are espe-
cially suitable for compression purposes. First of all, once we
know the degree n of the interpolation we have a formula to de-
termine the points. This means that there is no need to store their
coordinates. Second, the interpolation formula for the Padua
points can be written in the bivariate Chebyshev polynomials
orthonormal basis. This means that we can univocally identify
an interpolating polynomial from its coefficients. Together with
unisolvence, this feature can be seen as a valuable tool for the
identification of a given function.

Provided that ξξξ = (ξ1,ξ2) are the Padua points for interpo-
lation degree n, we can write the coefficients c j,k− j as follows:

b j,k− j = ∑
ξξξ∈Padn

f (ξξξ )wξξξ T̂j(ξ1)T̂k− j(ξ2), 0 ≤ j ≤ k ≤ n

c j,k− j = b j,k− j, cn,0 =
1
2

bn,0,

(3)

where f (ξξξ ) is the value at each Padua point of the function we
are going to approximate; T̂i(·) are the normalised Chebyshev
polynomials of the first kind of degree i, that is

T̂0(x) = T0(x) = 1

T̂i(x) =
√

2Ti(x) =
√

2cos(iarccos(x));
(4)

and wξξξ are the weights corresponding to each Padua point, de-
fined as

wξξξ =
1

n(n+1)
·

⎧
⎪⎨

⎪⎩

1
2 if ξξξ is a vertex point

1 if ξξξ is an edge point

2 if ξξξ is an interior point.

(5)

In practice, once we have determined the interpolation degree
and then the Padua points, the only thing we need to know to
perform the interpolation is the value f (ξξξ ).

Finally, we would like to remark what the minimal growth
of the Lebesgue constant implies. As above, it provides a theo-
retical boundary to the growth of the approximation error. This
means that, given a function f : [−1,1]× [−1,1] ⊂ R

2 → R, the
approximation error will be bounded by

En ≈ O(n−p log2 n), (6)

where p is the continuity of the function (that is, f ∈
Cp([−1,1]2)), as proven in the multivariate extension of Jack-
son’s theorem [1].

Histogram approximation and comparison
As written above, the Padua points are defined in a square

domain in R
2 and it is matter of ongoing research as to whether

it is possible to generalize them to R
3 and R

n. For this reason we
can only represent two-dimensional histograms. In our experi-
ments we approximated chromaticity histograms from the RGB
colour space, with axes (r,g) defined as

r =
R

R+G+B
, g =

G
R+G+B

(7)

and hue-saturation histograms, with axes (H,S), from the well-
known HSV colour space. This latter choice was due to the con-
sideration that, similarly to the chromaticity, we are trying to take
into account only the chromatic information, and to ignore the
brightness information. What we get at the end is a smooth func-
tion, represented by the interpolating polynomial of the Padua
points, that represents the density of the pixels projected onto the
(r,g) or onto the (H,S) plane.

One of the first issues we had to address is the fact that the
pixels of an image, projected onto the (r,g) chromaticity plane,
always lie within a triangle of vertices (0,0), (0,1) and (1,0).
The Padua points, on the other hand, are defined in a square.
We could choose to map them to a triangular domain (or equiv-
alently map the triangular chromaticity domain to a square), but
in this way the Padua points would lose their optimal features.
This is also one of the reasons why we took into account also
(H,S) histograms (since they are already defined on a square).
However, our tests showed that without applying any square-to-
triangle map, the Padua points correctly represent a density func-
tion which has values close to zero outside the triangular domain.

The main problem in approximating a histogram with a
polynomial is described concisely in equation (6): the smoother
the original function, the lower the approximation error. Our
original function here is a histogram, that is intrinsically not
smooth, since it is a discrete representation. How can we ad-
dress this issue? Our approach is not to build a smooth density
function that approximates a histogram, but rather to build the
density function directly. Since all that we need to know to ob-
tain the interpolating polynomial are the values of some function
at the Padua points, we weight each pixel with a Gaussian distri-
bution. More precisely, we perform the following steps:

1. Project each pixel of the image on to the domain (r,g) or
(H,V ).

2. Compute the coordinates of the Padua points in the same
domain (which is [0,1]× [0,1] ⊂ R

2).
3. Build a bivariate Gaussian distribution centred on a Padua

point ξξξ = (ξ1,ξ2) (i.e. with mean equivalent to the coordi-
nates of ξξξ ).

4. Evaluate the Gaussian function at the coordinates of each
projected pixel, sum all these values and assign the result
to f (ξξξ ) (computing this sum of Gaussian-weighted values
is relatively slow, although it is possible to speed up consid-
erably this part using a fast Gauss transform algorithm [8]).

5. Repeat the procedure from step 3 for each Padua point.

In this way we get the values of f (ξξξ ) for each Padua point, which
is sufficient for us to compute the coefficients c j,k− j of equa-
tion (3), and store them into a characteristic vector CCC. This vector
can be regarded as a sort of signature of an image, or rather of its
chromaticity distribution. Indeed, as we said before, the Padua
points are unisolvent, meaning that from a given set of values
f (ξξξ ) we can get only one interpolating polynomial.

Here we outline the steps to perform if we want to match an
unknown image in an archive of M model images.
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1. Compute the characteristic vectors of the model images
CCC1, . . . ,CCCM (in a real scenario we may assume that they are
already stored with the images).

2. Compute the characteristic vector of the unknown image
CCCu.

3. Sort the model images according to their distance d(u, i) =
‖CCCu −CCCi‖2 from the unknown one.

The image that is the “closest” to the unknown one in terms of
the 2-norm distance will be the best match.

It is possible to perform a further small step of approxima-
tion; when we are using the r,g histogram, that lies in the triangle
with vertices (0,0), (0,1) and (1,0), it is possible to set to zero
the values of the Padua points outside this triangle. The approx-
imation will be slightly less precise, but we gain speed and the
retrieval performance does not change noticeably.

Implementation issues
The entire part of our method that calculates the Padua

points interpolation is based on the API provided in the package
XuPad2D1. With these functions, it is straightforward to gener-
ate the Padua points, and then to obtain the coefficients of the
interpolating polynomial. Once we get those, it is also very easy
to evaluate the polynomial on any set of points. Thus, gener-
ating the Padua points is a very quick task. The bottleneck in
our method is actually evaluating the Gaussian functions (one
for each Padua point) at each pixel projected to the r,g space.
Naively, if we have N Padua points and an image of M pixels,
we need to perform O(MN) operations to compute this sum.
This task is known as the Gauss transform, and luckily some
quicker algorithms exist, that require only O(M +N) operations,
although they only compute an approximation to the solution (see
the fast Gauss transform, [8]). Only after this weighted sum has
been calculated it is possible to obtain the coefficients of the in-
terpolating polynomial, which are then used for the matching.

Figure 2. The 100 objects photographed in the COIL-100 dataset.

1Available at http://www.math.unipd.it/~mcaliari/
software/XuPad2D.tar.gz.

The experiments
In order to test the efficiency of our retrieval system, we

performed an experiment that consisted of creating an archive of
model images (Mi), and then querying it with unknown images
(Ui). The retrieval task consisted of sorting the model images
according to the distance from the unknown image Ui. Prior to
calculating their approximated histogram, the images were seg-
mented by removing the black background with a simple thresh-
olding. To evaluate the performance of the method we measured
how many times the correct model ranked first, second and third,
how many times it ranked greater than third, and how many times
it ranked in the top ten matches. Finally, we calculated the av-
erage match percentile (AMP) where, given n models, the match
percentile of a model Mi that ranks r, with 1 ≤ r ≤ n is given by

MP =
n− r
n−1

. (8)

Converting it to a percentage, a value of MP = 100% means
perfect matching; a value of MP = 99% means that the correct
model scored a higher rank than 99% of the other models, and
so on. After that, the match percentile is averaged over the set of
unknown images.

The first benchmark was the Columbia Object Image Li-
brary (COIL-100, [9]), which is a widely used dataset in pattern
recognition. It features 7200 pictures of a hundred objects (see
figure 2), that are each photographed from 72 different angles.
Although their shape and size can be different from different
view angles, their colour distribution does not change substan-
tially; moreover, histograms are not sensitive to scaling, and we
expect the Padua points representation to share this property. For
this dataset, we chose as a model the front view of each object,
and as query images all the other view angles.

Figure 3. An example of the viewing conditions of an object belonging to

the ALOI dataset.

Since our method projects the image onto the chromatic-
ity plane, it should not theoretically be affected by differences in
light intensity, therefore we also use a dataset where it is possible
to test this capability. The Amsterdam Library of Object Images
(ALOI) has exactly this feature. The library displays a thousand
objects, each in several configurations: in particular, we were
interested in the images captured under different illumination di-
rections. In [7] the set where the pictures were taken is described.
The object was surrounded by five lights, and the camera could
be set-up in one of three different geometries: straight in front
of the object, turned at 15 to the object and turned at 30 degrees
to the object. In addition the object could also be turned with
respect to the camera, so that the camera movement could be
compensated. In some cases the object was photographed with
only one of the five lights turned on, but two pictures were also
taken where two lights (two on the right side and two on the left
side) were simultaneously turned on, and finally one with all the
lights turned on. For each of these light conditions, a picture was
taken from all three positions of the camera. This resulted in 24
different illumination conditions for each object, as in figure 3.
From the 24 versions of each object, we selected the one with the
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most uniform illumination as the model: we had therefore a set
of a thousand model images, and all the remaining 23 thousand
images were treated as unknown.

Results

Comparison of the results with the histogram intersection
and the Padua points retrieval system in the (r,g) space on
the COIL-100 dataset.

Histogram inter-
section

Padua points

Coefficients
stored

2500 144 496 66

Ranked 1st (%) 78.14 68.94 68.42 67.11
Ranked 2nd (%) 7.28 7.10 8.96 9.86
Ranked 3rd (%) 3.18 4.76 4.65 4.90
Ranked greater
than 3rd (%)

11.39 19.20 17.97 18.13

1st and 2nd

match (%)
85.42 76.04 77.38 76.97

Top ten (%) 98.84 90.96 91.31 91.85
Average match
percentile (%)

98.18 97.45 97.31 97.34

Table 1 summarizes the test results on the COIL-100
dataset. We compared the Padua point representation of the chro-
maticity distribution with a full chromaticity histogram intersec-
tion [10]. The results are interesting, considering the difference
between the quantity of data stored by the two methods. As we
can see, using the Padua points we have a relatively significant re-
duction of the overall retrieval performance, but at the same time
instead of storing 2500 coefficients we need only 66 of them,
with a compression ratio of nearly 38:1 (with interpolation de-
gree n = 10 we get a polynomial with 66 coefficients).

Comparison of the results with the histogram intersection
and the Padua points retrieval system in the (r,g) space on
the ALOI dataset.

Histogram inter-
section

Padua points

Coefficients
stored

2500 144 496 66

Ranked 1st (%) 34.76 28.58 37.79 32.21
Ranked 2nd (%) 7.62 8.72 7.96 7.54
Ranked 3rd (%) 4.33 5.33 4.22 4.38
Ranked greater
than 3rd (%)

53.28 57.37 50.02 55.97

1st and 2nd

match (%)
42.38 37.30 45.75 39.66

Top ten (%) 59.22 59.23 62.91 56.56
Average match
percentile (%)

95.18 95.22 95.06 94.07

In table 2, we are again comparing the Padua points and the
histogram in the chromaticity space, but this time on the ALOI
dataset. In this much larger and harder dataset, when keeping the
compression ratio of 38:1 by using 66 coefficients, the perfor-
mance of the Padua points is only slightly inferior to that of the
histogram intersection. Moreover, when increasing the number
of stored coefficients to 496, that is about one fifth of the coef-
ficients needed by the histogram intersection, the Padua points
achieve the best overall performance.

Comparison of the results with the histogram intersection
and the Padua points retrieval system in the (H,S) space on
the COIL-100 dataset.

Histogram inter-
section

Padua points

Coefficients
stored

2500 144 496 66

Ranked 1st (%) 82.23 75.37 65.41 65.35
Ranked 2nd (%) 6.20 7.69 6.89 6.66
Ranked 3rd (%) 2.53 3.76 3.83 3.83
Ranked greater
than 3rd (%)

9.04 12.92 23.87 24.15

1st and 2nd

match (%)
88.42 83.32 72.30 72.01

Top ten (%) 96.41 95.75 88.24 88.11
Average match
percentile (%)

98.49 98.27 94.62 94.63

Comparison of the results with the histogram intersection
and the Padua points retrieval system in the (H,S) space on
the ALOI dataset.

Histogram inter-
section

Padua points

Coefficients
stored

2500 144 496 66

Ranked 1st (%) 35.79 24.85 27.42 29.10
Ranked 2nd (%) 8.34 7.17 7.24 7.61
Ranked 3rd (%) 4.67 4.49 4.51 4.27
Ranked greater
than 3rd (%)

51.20 63.50 60.83 59.01

1st and 2nd

match (%)
44.13 32.01 34.67 36.71

Top ten (%) 61.67 51.12 53.29 54.54
Average match
percentile (%)

95.83 94.28 94.22 94.03

If we try to compress the (H,S) distribution both on the
COIL-100 and on the ALOI dataset, as shown in tables 3 and 4,
the performance of the Padua points decreases, especially in
comparison to that of the histogram intersection, that instead im-
proves. This is probably due to a different spreading of the dis-
tribution into the [0,1]× [0,1] domain.

Conclusion
Here we have proposed a new representation for two di-

mensional colour histograms that we have shown to be a good
compromise between stored data and retrieval performance. Al-
though it might be argued that the results of the retrieval tests are
not excellent, it is known that in such large and complex datasets
the colour cue alone cannot guarantee a very high retrieval ratio;
however, we want to stress here how our method can efficiently
compress the information carried by a larger histogram, with-
out substantially losing much of the retrieval performance, espe-
cially when the Padua points are used to build a representation
of the chromaticity distribution, as the experiments on the ALOI
dataset show. It has to be pointed out that in some cases the his-
togram intersection has significantly better performance than the
Padua points method. This appears to be especially true in the
COIL-100 dataset, probably because the rotation of the objects
introduces some variation in the colour distribution to which the
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Padua points are more responsive than the histogram intersec-
tion.

There are still some open questions about the Padua points
method, that further investigation can address. Specifically, the
most important point is that the standard deviation of the Gaus-
sian functions affects the final retrieval performance. So far we
used a standard deviation that gives good results, but understand-
ing how to find an “optimal” standard deviation might signifi-
cantly improve the retrieval performance. A second interesting
issue is to find a norm different from the Euclidean one, that bet-
ter represents the distance between the coefficients of the poly-
nomials.
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