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Abstract 
This paper presents a novel variance (contrast) 

maximizing and brightness preserving color to grayscale image 
transformation method. We formulate the problem of 
converting color to grayscale image as a constrained 
optimization problem where we maximize the variance 
(contrast) of the grayscale image subject to the constraint that 
it preserves the brightness of the color image. Our algorithm 
has no free parameter and has a closed-form solution. We 
present experimental results to demonstrate the effectiveness of 
the new technique and compare it with other recent methods. 

1. Introduction 
Even though color imaging has become ubiquitous, there 

is still demand for high quality grayscale images in printing and 
in various image analysis tasks. In digital video and 
photography, the luminance channel or the Y component of the 
image is often used as the grayscale image [1]. One of the 
major problems for this simple approach is that in isoluminant 
regions, visual contrasts that are visible in the color image will 
become invisible in the grayscale image. That is, two objects 
with different chromaticities but the same brightness will 
become indistinguishable in the grayscale image. Ideally, the 
grayscale image should convey the same amount of visual 
information as the original color image or should preserve as 
much as possible the visual information contained in the color 
image. One way to convey the maximum information of the 
color image is to project the colors in a direction that has the 
maximum variance. This can be done using the popular 
principal component analysis (PCA). However, such approach 
may result in an image that is visually distorted. For example, 
sometimes the image can be inverted since an inverted image 
and the correct image will have the same variance. Another 
problem is that it may be difficult to map the dynamic range of 
the projections correctly since we don’t know what is black and 
what is white. Recent methods try to produce grayscale images 
with visual contrasts follow that of the color contrasts [2 – 4]. 
These methods are problematic. First, in methods such as [2, 3], 
the number of variables range from hundreds to thousands 
which render the algorithms slow and can be trapped in local 
minima. Secondly, although faster solutions to these ideas have 
been proposed [4], these methods have many free parameters 
and require user intervention to produce sensible results. We 
should say that the default parameters of the algorithm of [4] 
work reasonably well.  

In this paper, we propose a novel solution to the color to 
grayscale transformation problem. Our method finds a linear 
transform that converts a color image to a grayscale image in 
such a way that the variance of the transformation is maximized 
at the same time the grayscale image preserve the brightness of 
the color image thus avoiding situations such as the 
transformed image become inverted. Finding the transform 

coefficients is formulated as a constrained quadratic 
optimization problem where we maximize the grayscale 
image’s variance subject to the constraints that the grayscale 
image preserve the average brightness of the original image and 
that the transformation is energy preserving. Our method has no 
free parameter and is guaranteed to converge to a global 
minimum. Results show that the new method produces 
grayscale images that not only have excellent contrasts but are 
also visually pleasing. 

2. The Method 
Let I = {I(x, y)} = {R(x, y), G(x, y), B(x, y)} is a color 

image, we want to find three transform coefficients, α, β, and γ, 
to transform I into a grayscale image L = {L(x, y)} = {αR(x, y) 
+ βG(x, y) + γB(x, y)}, where (x,y) is the spatial co-ordinate of 
the pixels. We want L to have the maximum variance in order 
to convey the maximum information. However, only 
maximizing the variance has no guarantee that L will be 
visually pleasing or even visually meaningful. Therefore extra 
constraints are necessary in order to produce visually plausible 
maximum variance grayscale images. There maybe various 
ways to set such constraints, we believe they should include the 
followings. First, the transform should be energy preserving. 
We should not amply the image’s energy but rather should 
preserve the energy in the grayscale. What this means is that we 
want to have α + β + γ = 1. Second, the grayscale image should 
preserve the brightness of the original image. This is an 
important condition. A given image and its negative will have 
the same variance. Preserving the brightness of the original 
image should remove such an ambiguity thus producing a 
visually correct image. The problem can therefore be 
formulated as 

Transform I to L according to  

( ) ( ) ( ) ( )yxByxGyxRyxL ,,,, γβα ++=   (1) 

The transform coefficients is found as 

( ) ( ){ }( )( )yxL ,varmaxarg,,
,, γβα

γβα =    (2) 

Subject to 

1=++ γβα          (3) 
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Let the average of the Red, Green and Blue channels be 
m

R
, m

G
, and m

B
, respectively; the mean vector of the image m = 

(m
R
, m

G
, m

B
); let u = (α, β, γ). Let R = (R(1, 1), R(1, 2) …, R(M, 

N)) be the MxN dimensional array of the red pixels, where 
MxN is the dimension of the image. We define G and B 
similarly for the green and blue pixels. The covariance matrix 
of the color channels is 
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The variance of the transformed grayscale image L, 
Var(L), and the average brightness, Ab(L), are  

 

( ) ( ) TT muLAbuuLVar == ξ    (6) 

 
Without loosing generality and assuming that the average 

brightness of the original color image is unity. The optimization 
problem now becomes  

 

Maximizing ( ) TuuE ξγβα =,,   

Subject to 1=++ γβα and 1=Tmu    (7) 

 
The cost function is quadratic and the constraints are 

linear, the problem has a unique solution and can be solved 
using a number of standard methods. 

3. Implementation 
Solving the constrained optimization problem of (7) can 

be done using standard methods such as constrained 
optimization and quadratic programming (more detail about the 
implementation is given in the Appendix). Our implementation 
was based on Quadratic Programming (QP) and was 
implemented in Matlab. 

4. Experimental Results 
We have tested our method on a variety of images. We 

have also compared our results with a recent technique [4]. 
Basically [4] is a fast implementation of the methods described 
in [2, 3] with several implementation innovations.  

Figures 1 – 4 show examples of converting color images 
into grayscale by the NTSC system, the method of [4] (using 
their default parameters) and our new method. It should be 
noted that our method has no free parameters. From these 
results, it is seen that ours are at least as good as those of [4] 
and in some case better. 

In the experiments, we also observed that the technique of 
[4] produced more noticeable visual artifacts as compared with 
our technique and such an example is illustrated in Figure 5. 

5. Concluding Remarks 
In this paper, we have presented a novel computational 

method for converting color images to grayscale. Our method 
aims to achieve maximum contrast at the same time preserve 
visual correctness. Our solution is based on a constrained 
optimization technique and it has a closed form solution and no 
free parameters. We have presented experimental results which 
demonstrated that our new method is very effective and out 
performs state of a state of the art technique.  
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Appendix A: Implementation Detail 
 
A1. Constrained Optimization: The optimization problem of 
(7) can be solved using constrained optimization.  

 
According to theory of constrained optimization, we can 

get the following formulation: 
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Solving the above simultaneous equations we can obtain 
α, β, and γ.  
 
A2. Quadratic Programming: The optimization problem can 
also be solved by quadratic programming.  

First of all, a quadratic programming problem has a form 
like the following: 

1min
2x

x Hx f x′ ′+  such that   
A x b
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⋅ =

≤ ≤

 

So, we change the formulation E into the quadratic 
programming problem:  
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Then we can use the function quadprog to solve it: 

( ), ,[],[], , , ,p quadprog H f Aeq beq lb ub=  

Where ( )1 1 1Aeq = , ( )1beq = , ( )0 0 0lb = , 

( )1 1 1ub = . 

Then from the vector p we get is what we want. 
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Fig. 1 (a) Original color image; (b), NTSC, (c) [4] (d) Ours 
 

 (a)  (b) 

(c)  (d) 
Fig. 2 (a) Original color image; (b), NTSC, (c) [4] (d) Ours 
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 (a)  (b) 

 (c)  (d) 
Fig. 3 (a) Original color image; (b), NTSC, (c) [4] (d) Ours 

 

 (a)  (b) 

 (c)  (d) 
Fig. 4 (a) Original color image; (b), NTSC, (c) [4] (d) Ours 
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 (a)  (b) 

 (c)  (d) 

 (e) 

 (f) 
Fig. 5 (a) Original color image; (b), NTSC, (c) [4] (d) Ours. (e) a sub-image of (c), (f) a sub-image of (d) 
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