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Abstract
Two spatial and color adaptive gamut mapping algorithms

have recently been introduced. We propose and evaluate a set of

modifications to improve their results. Modifications include a

change in the image decomposition in two bands with an initial

Black Point Compensation (BPC) applied to the low-pass band

followed by an adaptive merging of the two bands.

Introduction
In the quest for an optimal reproduction of a color image, an

impressive number of Gamut Mapping Algorithms (GMAs) have

been proposed in the literature. Morovic and Luo have made an

exhaustive survey in [1]. After much efforts to improve adap-

tive GMAs, it has been advocated that preservation of the spatial

details in an image is a very important issue for perceptual qual-

ity [2, 3]. GMAs adaptive to the spatial content of the image, i.e.

Spatial Gamut Mapping Algorithms (SGMAs), have been intro-

duced. These new algorithms try to balance both color accuracy

and preservation of details, by acting locally to generate a repro-

duction perceived as close to the original. “One of the fundamen-

tal motivations of spatial gamut mapping is the need to preserve

the edge between two out-of-gamut colors, which would other-

wise map individually to the same in-gamut color” [4]. There are

a limited number of publications regarding this recent and impor-

tant development. Meyer and Barth [5] first introduced a SGMA,

followed by Kasson [6] Nakauchi et al. [7], XSGM by Bala et

al. [8], McCann [2], MSGM4 by Morovic and Wang [9], Kimmel

et al. [4], Zolliker et al. [10] and Farup et al. [11]. We distinguish

two groups of SGMAs which follow different approaches: the

first one called compensation approach reinserts high-frequency

content in clipped images to compensate for the loss of details

caused by clipping, the second one called optimization approach

uses iterative optimization tools.

Two new Spatial and Color Adaptive Gamut Mapping Algo-

rithms (SCAGMAs) have been recently introduced in [12], Spa-

tial and Color Adaptive Compression (SCACOMP) and Spatial

and Color Adaptive Clipping (SCACLIP). Based on spatial color

bilateral filtering, they both take into account the color proper-

ties of the neighborhood of each pixel. Their goal is to preserve

both the color values of the pixels and their relations between

neighbors. While psycho-physical experiments have validated

SCACOMP and SCACLIP, they show that results for certain cat-

egories of images are not optimal. Our aim is to propose a set of

modifications of the algorithms to improve these results.

SCACOMP and SCACLIP
These two adaptive algorithms are described by the diagram

in Fig. 1 and by the following process:

1. Conversion of the original image to the CIELAB color

space using the relative colorimetric intent of the input ICC

profile: Iin.

2. Decomposition in low-pass and high-pass bands using bi-

lateral filtering (BF) [13]: Ilow and Ihigh.

3. HPMin∆E clipping [14] of the low-pass band: I
low

.

4. Merging of I
low

and Ihigh.

5. Adaptive mapping: Iout .

6. Conversion to the CMYK encoding of the output printer

using the relative colorimetric intent of its ICC profile.

Figure 1. Framework for SCACOMP and SCACLIP.

SCACOMP and SCACLIP only differ in step 5:

• SCACOMP proposes an adaptive compression algorithm

to preserve the color variations between neighboring pixels

contained by Ihigh. The concept is to project each color of

pixel lying outside the destination gamut GamutDest toward

the 50% greypoint of GamutDest [15], more or less deeply

inside the gamut depending on its neighbors (see Fig. 5).

• SCACLIP proposes to set the direction of the projection as

a variable: for each pixel the optimal mapping direction

will be chosen so that the local variations are best main-

tained according to a local energy criterion (see Fig. 6).

Drawbacks
When considering the proposed algorithms and after analiz-

ing the resulting images they produce, we observe the following:

• Results of both SCAGMAs on colorful images are very

good, i.e. color attributes and details are well preserved, ex-

cept for a few images where artifacts from the initial gamut

mapping HPMin∆E on Ilow are noticeable.

• Results on low-key images are average, the darkest regions

appearing to be noisy. In our experimental setup, the values

of the black points of the input and destination gamuts was

L∗ = 0 and L∗ = 27 respectively. Thus large parts of low-

key images have been clipped by the initial HPMin∆E of

Ilow. When high-pass content Ihigh is added to the severely

altered I
low

, the resulting images appears unnatural.

• Details in resulting images look significantly better when

displayed on a monitor, but improvement is not as much

striking on prints.
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Modifications in the workflow
Based on these observations, we are now investigating a

set of modifications in the proposed color re-rendering worflow

aimed at enhancing the final results. In the following sections,

modifications are proposed for several steps of the process, in-

cluding the image decomposition, an initial Black Point Com-

pensation (BPC) algorithm applied to the low-pass band, an

adaptive merging of the two bands, and evolutions of the spa-

tial and color adaptive gamut mapping algorithms. The diminu-

tion of details caused by the modulation transfer function of the

printing process is currently being investigated [?].

Image decomposition
One key aspect of the proposed SCAGMAs is the decom-

position of the image in two bands (see Fig. 1). The goal of this

decomposition is to set apart the local means and the local details

of the image in order to process them separately and preserve

both as much as possible in the resulting image. In classic gaus-

sian filtering, the width of the gaussian (set by σd) determines

the boundary between the ‘lower’ frequency content going to the

low-pass band (considered as local means) and the ‘higher’ fre-

quency content going to the high-pass band (local details). Set-

ting the appropriate value for σd is not a trivial task. This choice

relates to the definition of ‘local details’ (i.e. small or minor ele-

ments in a particular area). This definition depends on multiples

parameters such as the size and resolution of the reproduction,

the modulation transfer function of the reproduction device, the

viewing conditions, the distance of visualization and the behav-

ior of the human visual system. The human visual system is often

modeled by multi-scale decompositions [16] with more than two

bands (usually up to five). Such multi-scale decomposition has

been proposed in the spatial gamut mapping MSGM by Morovic

and Wang [9]. It could be relevant in our algorithm and would

allow the definition of several categories of details with differ-

ent sizes. However for the sake of keeping the algorithm simple

and the computing cost low, we limit the image decomposition

to two bands. Thus we need to investigate the impact of σd on

the decomposition to select an appropriate value.

Furthermore, to avoid the introduction of halos [12] the de-

composition in SCACLIP and SCACOMP is obtained by 5D

Bilateral Filtering (BF) in the CIELAB space as proposed by

Tomasi and Manduchi in [13]. It is a combined spatial do-

main and color range filtering. Let LBF = BF(L), aBF = BF(a),
bBF = BF(b) denote the three channels of the filtered image. The

LBF value of pixel i, Li
BF , can be obtained as follows (similar ex-

pressions for ai
BF and bi

BF ):

Li
BF = ∑

j∈Iin

w
j
BF L j, (1)

w
j
BF =

d(xi,x j) r(pi,p j)

∑
j∈Iin

d(xi,x j) r(pi,p j)
, (2)

where Iin is the original image, d(xi,x j) measures the geometric

closeness between the locations xi of pixel i and x j of a nearby

pixel j. r(pi,p j) measures the colorimetric similarity between

the colors (Li, ai, bi) and (L j, a j , b j) of pixels i and j.

In our implementation, d(xi,x j) and r(pi,p j) are gaussian func-

tions of the euclidean distance between their arguments:

d(xi,x j) = e
−

1
2
( ||xi

−x j
||

σd
)2

, r(pi,p j) = e
−

1
2
( ∆Eab(pi ,p j )

σr
)2

. (3)

where the two scale parameters σd and σr play an essential role

in the behavior of the filter.

In the 5D bilateral filter the ∆Eab color distance between

the central pixel and nearby pixels is taken into account. This

allows us to avoid halos and to handle specifically the local tran-

sitions between local similar pixels. Nearby pixels at small ∆Eab

distance (i.e. perceived as similar) are filtered. Pixels are less

and less filtered as the ∆Eab distance becomes large compared

to σr. Thus σr determines a reference to set apart small ∆Eab

from large ∆Eab. While small ∆Eab values are well correlated

with perceived color differences, it is more difficult to define a

threshold σr above which ∆Eab values can be considered as large.

One goal of the SCAGMAs is to preserve colors that would be

mapped by gamut mapping algorithms to the same color of the

destination gamut. Thus to set σr , the average distance between

the input and destination gamuts might be considered. The abil-

ity of the output device to maintain small differences between

colors could also be taken into account [?].

Given the lack of a straightforward definition for ‘local de-

tails’ and ‘similar colors’, we propose to review the previous

work and to evaluate the impact of σd and σr values on the image

decomposition.

Previous work
Tomasi and Manduchi [13] explore different values for σd

and σr, and present 8 bits grayscale images processed with σd =
3 pixels and σr = 50, yet the sizes of the processed images are

not specified. As the setting of σd should depend on the image

size and the conditions of visualization, Zolliker and Simon [10]

obtained good results with σd in the range of [2,5]% of the image

diagonal and σr values in the range of [10,25] ∆Eab. They have

applied the filter in their spatial gamut mapping algorithm with

σd = 4% of the image diagonal and σr = 20∆Eab.

In the first implementation of SCACLIP and SCACOMP we

empirically set the values to σd = 1% of the image diagonal and

σr = 25∆Eab (for images printed at 150 dpi, at the size [9-15] cm

by [12 - 20] cm, viewed at a distance of 60 cm). This value σd =
1% of the image diagonal is not in the range proposed by Zolliker

and Simon but the context and the filtered images are different:

they filter image differences and we filter the whole image. This

mean that the characteristics (contrast, saturation...) are different

and the settings of the bilateral filter may consequently differ.

Experiment
In the following we investigate the impact of the value

of σd and σr on the image decomposition. Each parameter

is set at different values: σr = 5,10,20,40,80 ∆Eab and σd =
5,10,20,40,80 pixels, i.e. for an image size of 1125 x 750:

σd = 0.37,0.74,1.49,2.99,5.98 % of the diagonal of the image.

In SCACLIP and SCACOMP, 5D Bilateral Filter is applied to

the lightness and the chroma: the original CIELAB image is first

converted to the polar representation CIELCH, i.e. Lightness,

chroma and hue. To compute the low-pass band Ilow, only the

two channels Lin and cin of the original image Iin are filtered us-

ing 5D bilateral filtering as described above (Eq.1-3). The hin

channel is not filtered, to keep the hue unaltered. Nevertheless,

since the 5D bilateral filter involves ∆Eab distance, the hue is

taken into account in the filtering of Lin and cin channels. The

high-pass band Ihigh is then calculated by taking the difference

of Iin and the low-pass band Ilow:

Ilow = (LBF ,cBF ,hin), (4)

Ihigh = Iin − Ilow = (Lin −LBF ,cin −cBF ,0), (5)

where LBF = BF(Lin) and cBF = BF(cin).
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Figure 2. Impact of the values of σd and σr on Ilow. Left to right: σr =

5,10,20,40,80 ∆Eab, top to bottom: σd = 5,10,20,40,80 pixels.

Figure 3. Impact of the values of σd and σr on Ihigh. Left to right: σr =

5,10,20,40,80 ∆Eab, top to bottom: σd = 5,10,20,40,80 pixels. A constant

[50,0,0] was added to the CIELab values for illustration purpose.

In Figures 2 and 3 we observe the impact of varying the

values of σd and σr on Ilow and Ihigh respectively. From the top

to the bottom: σd = 5,10,20,40,80 pixels and from left to right

σr = 5,10,20,40,80 ∆Eab.

Analysis

A larger value of σd means a broader filter in the image

domain, thus a larger set of frequencies being filtered. Indeed

in Figures 2 and 3, when browsing the mosaic of images from

top to bottom, one observes that Ilow becomes blurrier and Ihigh

presents more and more details.

A larger value of σr means a larger filter in the color do-

main, thus a larger range of color transitions being filtered. When

σr is very large, the bilateral filter is not modulated by the color

content of the filtered area and the resulting blurring of the image

is similar to the blurring of a two dimensional gaussian filter. It

also leads to the introduction of halos near the strong edges. In

Figure 3, when browsing the image from left to right, one finds

more and more color content in Ihigh.

We now consider the relation between σd and σr. A small

value of σr severely limits the blurring of the image to very small

color transitions for any σd . A small value of σd limits the blur-

ring of the image to high frequency content for any σr. When

both σ have very large values, Ilow shows some color shifts due

to a large boost of chroma in desaturated areas surrounded by sat-

urated areas. These would cause trouble in the gamut mapping

process, yet it only occurs for very large σ values.

Selection of σd and σr

Based on our observations, we find that values σr = 20 ∆Eab

and σd = 20 pixels (i.e. aproximately 1.5% of the diagonal) to

be a good compromise which suits these algorithms and our set

of images. Further studies remains necessary to set these param-

eters with more objective methods.

Black Point Compensation of Ilow

Scaling the dynamic range of the image to fit in the out-

put dynamic range is often part of rendering workflows. Applied

before the gamut mapping algorithm, it avoids consequent clip-

ping of low-key values in the image. In the following section we

discuss several scaling options found in the literature, select an

algorithm and include it in the workflow of the SCAGMAs.

Choice of color space

Black Point Compensation (BPC) [17] also referred to as

linear XYZ scaling [18] maps the source’s black point to the des-

tination’s black point in the CIEXYZ color space, hence scaling

intermediate color values. Alternatively a Lightness Compres-

sion Algorithm (LCA) also named lightness scaling, rescaling or

remapping might be applied to the image in the CIELAB color

space. Linear, polynomial and sigmoidal LCAs [19, 20] have

been proposed and implemented in point-wise (i.e. non spatial)

color workflows. Experimental results [19, 20] suggest that the

performance of sigmoidal scaling depends on the magnitude of

gamut difference and might be image-dependent. XYZ scaling is

considered by Holm in [18] as a baseline color re-rendering for

reasonably similar output-referred source and destination media.

Most point-wise ICC [21] workflow implementations apply lin-

ear CIEXYZ scaling (e.g. Adobe in [17]).

Lightness scaling is also proposed in existing spatial gamut

mapping algorithms: Meyer and Barth propose to apply a linear

compression to the low spatial-frequency band in the log domain

[5]. In MSGM by Morovic and Wang [9], an optional sigmoidal
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lightness compression of the J channel in CIECAM97 space low-

est spatial-frequency band is proposed. Similar techniques have

also been used to render High Dynamic Range (HDR) images,

such as in Durand and Dorsey [22] where the range of the base

layer is compressed using a scale factor in the log domain of the

rgb pixel values.

Black Point Compensation and Gamut Mapping
While SCACLIP and SCACOMP proposed in [12] did not

include BPC, such algorithm improves the quality of the re-

sults. In our workflow we now apply linear image depen-

dent CIE XYZ scaling where the low spatial-frequency band

Ilow is first converted to a normalized flat XYZ encoding with

white point = [1,1,1] and its range scaled to fit into the range of

the destination device as proposed in [17]. The YlowBPC
value of

pixel i, Y i
lowBPC

, is obtained as follows (similar expressions for

X i
lowBPC

and Zi
lowBPC

):

Y i
lowBPC

=
Y i

low −Yminlow

1−Yminlow

(1−YminDest)+YminDest , (6)

where Y i
lowBPC

is the scaled Y value of the destination pixel i, Y i
low

the Y value of the source pixel i, Yminlow the minimum Y value of

the image and YminDest the minimum Y value of the destination

device. The resulting image is then converted to CIELCH. In

Legend of Figure 4. Impact of black point compensation.

No BPC BPC

Ilow IlowBPC

Ilow IlowBPC

Out-of-gamut pixels in

Ilow

Out-of-gamut pixels in

IlowBPC

Distance to gamut in Ilow Distance to gamut in IlowBPC

Fig. 4 we compare two scenarios: the left column shows the pro-

cess without Black Point Compensation, and the right column the

process with BPC. Top row Ilow (left) is compared with IlowBPC

(right). In second row gamut mapped: I
low

(left) is compared

with BPC and gamut mapped I
lowBPC

(right). Notice the artifacts

in I
low

(i.e. the color shifts in the straberries). In third row a light

cyan mask of the out of gamut pixels in Ilow (left) and IlowBPC

(right). Bottom row: representation of the distance to gamut of

out of gamut pixels in Ilow (left) and IlowBPC
(right). Constant

[50,0,0] grey was added to the difference CIELAB image for il-

lustration purpose. BPC significantly decrease the number of out

of gamut pixels and the distance between the gamut and these

pixels. Notice that Black Point Compensation can be considered

as a gamut compression algorithm. As such, it produces images

that are less saturated (see first row of Fig. 4). This desaturation

is not always welcomed and/or necessary. Thus we propose to

apply BPC on an image basis only if large parts of the image are

significantly below the level of the output black point and we will

investigate this possibility in future experiments.

Since the BPC in CIE XYZ scales down the gamut of Ilow,

boundaries of IlowBPC
’s gamut are closer to the destination gamut

and the choice of initial clipping has less impact on the final re-

sults. In previous experiments [12] some colorful images clip-

ping artifacts were noticeable. These artefacts were due to the

initial clipping using HPMin∆Eab. However such artifacts are

no longer an issue when applying the black point compensation

first (see second row of Fig. 4). And HPMin∆Eab is appropriate

to preserve the saturation:

I
low

= HPMin∆E(IlowBPC
). (7)

Figure 4. Impact of black point compensation.
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Improvements in SCAGMAs
In this section we propose a set of improvements of SCA-

CLIP and SCACOMP. First an adaptive merging ot Ilow and Ihigh

is proposed, then modified projection in SCACOMP and modi-

fied energy minimization in SCACLIP are presented.

Adaptive merging of Ilow and Ihigh
In first version of the SCAGMAs, Ilow is mapped then Ihigh

is added to I
low

. When image areas of I
low

have been greatly

modified by the clipping, the newly composed image might have

strong local distortions. Areas in the image where both Ilow and

Ihigh have large energies but I
low

has lost most of its energy, it

might be wise to reduce the energy in Ihigh to maintain a bal-

anced ratio between contributions from both bands. Therefore

we introduce α(i,Ilow,I
low

) a local variable affecting the amount

of Ihigh being added to I
low

during the merging at each pixel i.

In = fn(Ilow
+α.Ihigh) , n ∈ {1,2,3}, (8)

α i = min
(

∑
j∈Iin

w
j
BF

||p
j

low
−pi

low
||+C1

||p
j

low
−pi

low
||+C1

,1
)
, (9)

where C1 is a small constant value and w
j
BF are the weights of

the bilateral filter used in the decomposition of the image (see

Eq. 1). In our experiments we set C1 = 0.001 with plow and p
low

normalized in range [0,1]. α is taken into account in the modified

versions of SCACOMP (see Eq. 10) and SCACLIP (see Eq. 14).

Notice that α is less critical when Black Point Compensa-

tion is applied to Ilow as the local structure of the low-pass band

is then better preserved and α is often close to 1.

Modified projection in SCACOMP
SCACOMP, while being validated by psycho-physical ex-

periments, can be further optimized by modifying the mathemat-

ical expression. In SCACOMP, each neighbor j contributes to

the shifting of pixel i, weighted by w
j
BF defined by BF (see Eq.

1). In this evolution of SCACOMP, each neighbor’s contribution

is controlled by wi
shi f t :

pi
out = SCLIP(pi

low
+α ipi

high
) + wi

shi f t
pi

u, (10)

where pi
u is the unit vector toward 50% grey,

wi
shi f t = ∑

j∈IIn

w
j
BF max(p j

o f f set •pi
u −|pi

o f f set |,0), (11)

pi
o f f set = SCLIP(pi

low
+α ipi

high)− (pi

low
+α ipi

high), (12)

and where “•” denotes the scalar product (see Fig. 5).

As wi
shi f t

≥ 0, the resulting color value lies in the gamut, be-

tween the gamut boundary and the 50% greypoint of GamutDest .

This modification prevents numerical imprecisions which could

arise with very small values of |po f f set |.

Modified energy minimization in SCACLIP
In SCACLIP, to maintain the content of Ihigh the direction

of the projection has been set as a variable: for each pixel the

optimal mapping direction is chosen so that the local variations

are best maintained. SCACLIP, while being validated by psycho-

physical experiments, can be further optimized by changing the

mathematical expression of the energy to preserve. To get faster

results, the choice is restricted to a set of 3 directions proposed

in published algorithms: f1 = HPMin∆Ea , f2 = CUSP and f3 =
SCLIP [1]. Ihigh and I

low
are merged and the 3 mappings fn,

n ∈ {1,2,3}, are run:

Figure 5. SCACOMP: p1
o f f set (j=1) contributes to the shifting of (pi

low
+pi

high)

toward the 50 % greypoint, unlike p2
o f f set (j=2).

I fn
= fn(Ilow

+α iIhigh) , n ∈ {1,2,3}. (13)

In this new evolution of SCACLIP, the energy is defined as

follows:

E i
n = ∑

j∈Iin

w
j
BF ||(p j

fn
−pi

fn
)−α i.(p j

in −pi
in)||. (14)

Then the direction of projection for which E i
n is the smallest

is selected for the pixel i (see Fig.6):

select = argmin
n

(E i
n), n ∈ {1,2,3}, (15)

pi
out = fselect(pi

low
+pi

high). (16)

Figure 6. In modified SCACLIP the direction of projection of each pixel is

selected to preserve as much as possible the vectors pi
in p

j
in.

The goal of this modification is better minimize the local

differences between the original image and the resulting image.

Summary: Proposed Algorithms
The modified versions of SCACOMP and SCACLIP are de-

scribed by the diagram in Fig. 7 and by the following process:

Figure 7. Framework for new Spatial and Color Adaptive Gamut Mapping.

1. Conversion of the original image to the CIELAB color

space using the relative intent of the input ICC profile: Iin.
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2. Decomposition in two bands using bilateral filtering (BF)

[13]: Ilow and Ihigh.

3. Black Point Compensation [17] of Ilow: IlowBPC
.

4. HPMin∆E clipping [14] of IlowBPC
: Ilow.

5. Adaptive merging of I
low

and Ihigh.

6. Adaptive mapping: Iout

7. Conversion to the CMYK encoding of the output printer

using the relative colorimetric intent of its ICC profile.

Conclusions
A set of modifications has been introduced to improve re-

sults of two previous spatial and color adaptive gamut mapping

algorithms: change in the image decomposition, an initial Black

Point Compensation (BPC) algorithm of the low-pass band fol-

lowed by an adaptive merging of the two bands. With these

modifications, significant improvements have been obtained on

images previously subject to artifacts (see Fig. 8). Black point

compensation solves most of previous drawbacks and lessen the

differences between results obtained with SCACOMP and SCA-

CLIP.

More studies are needed to achieve optimal image decom-

position: adaptive black point compensation will be investigated,

we also need to better understand why results on prints are not as

convincing as the one on monitor.

Figure 8. Comparison of mapping algorithms to the gamut of an Oce

Colorwave 600 printer with standard paper. Top: original SCID-LAB image

from ISO 12640-3. Second: BPC on original followed by HPMin∆E. Third:

previous SCACLIP. Bottom: modified SCACLIP.
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