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Abstract
In this paper, we propose to study the influence of the neigh-

borhood used to process the color co-occurrence matrices on the
quality of texture analysis.

First, we measure the discriminating power of Haralick fea-
tures extracted from the color co-occurrence matrices of color
images coded in 28 different color spaces, and we select the
most discriminating one for different 3x3 neighborhoods. Then,
we experimentally verify that the most discriminating feature
space, built by using an iterative selection procedure, depends
on the chosen neighborhood and finally we study the impact of
the neighborhood choice on the classification results by using the
same feature space but different neighborhoods.

Experimental results achieved with the Barktek database
have firstly shown the adequacy between the discriminating po-
wer of the selected feature space and the rate of well-classified
images. We have also seen that the choice of the neighborhood
does not highly influence the selection of the most discriminating
feature but has a significant impact on the quality of discrimi-
nation between the considered textures. Indeed, we have worked
with textures which contain vertical patterns and have shown that
the best classification results have been obtained with horizontal
neighborhoods. The choice of the neighborhood depends conse-
quently on the analysed textures.

Introduction
The color texture classification consists in regrouping

images whose textures are similar. Many authors have compa-
red the color texture classification results obtained, on one hand
thanks to grey scale analysis, and on the other hand, thanks to
color texture features. They have shown that the analysis of color
improves the rate of well-classified images and consequently the
characterization of the different textures [1, 2, 3]. That is why
many relevant features, initially defined in grey scale, have then
been extended to color and used to classify color textures :

– Hernandez characterizes the different color texture
classes of the Vistex benchmark database thanks to mul-
tispectral Markov random fields [4, 5].

– The extention to color of local binary patterns is used
by Mäenpää and M. Pietikäinen for color textured image
classification [2, 6].

– Arivazhagan, Sengur and Van de Wouwer analyse co-
lor textures thanks to features extracted from the wavelet
transform [7, 8, 9].

– Palm builds a 96-dimensional feature space to characte-

rize the color textures of the BarkTex benchmark data-
base with the Haralick features extracted from color co-
occurrence matrices [10, 11].

Like Drimbarean and Chindaro, Palm has compared the per-
formances of texture classification reached by texture features
extracted from images whose pixel color is represented in dif-
ferent color spaces [1, 3, 10]. Indeed the analysis of the color
properties is not restricted to the acquisition color space (R,G,B)
and there exists a large number of color spaces which respect
different properties [12]. These color spaces can be classified
into four families : the primary color spaces, the luminance-
chrominance color spaces, the perceptual color spaces and the
independent color component spaces (see figure 1).
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FIG. 1: Color space families.

In a previous study, we have seen that there does not exist
any color space which is adapted to the classification of all kinds
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of color textures [13]. That’s why we have characterized the tex-
tures with features extracted from color images coded in each of
the NS = 28 different color spaces of figure 1. We have compa-
red our classification results with those obtained by using only
the (R,G,B) space and have shown that the projection into dif-
ferent color spaces significantly improves the classification qua-
lity [13]. Moreover, it allows to work with a low-dimensional
feature space.

In this paper, the color texture features used are Haralick
features extracted from color co-occurrence matrices [14] (see
second section). These matrices represent statistics on local in-
teractions between the colors of pixels in a given neighborhood.
We propose to study in this paper the influence of the neighbo-
rhood used to process the color co-occurrence matrices on the
quality of texture analysis.
First, we measure the discriminating power, described in the third
section, of each Haralick feature extracted from the color co-
occurrence matrices of the color images coded in each of the NS
considered color spaces, and we select the most discriminating
one for different 3x3 neighborhoods.
We propose also to experimentally verify that the most dis-
criminating feature space, built by using the iterative selection
procedure described in the fourth section, depends on the cho-
sen neighborhood and we study the impact of the neighborhood
choice on the classification results.
Finally, we study the real influence of the neighborhood used
to process the color co-occurrence matrices on the classification
results by using the same feature space but different neighbo-
rhoods.
All these experiments are achieved with the color textures of the
BarkTex benchmark database [11].

Haralick features extracted from color co-
occurrence matrices

Color co-occurrence matrices, introduced by Palm [10], are
statistical features which both measure the color distribution in
an image and consider the spatial interactions between the color
of pixels. These matrices are defined for each color space deno-
ted (C1,C2,C3) of figure 1. Let Ck and Ck′ , be two of the three
color components of this space (k,k′ ∈ {1,2,3}) and MCk,Ck′ [I],
the color co-occurrence matrix which measures the spatial inter-
actions between the color components Ck and Ck′ of the pixels
in the image I. The cell MCk,Ck′ [I](i, j) of this matrix contains
the number of times that a pixel P whose color component value
Ck(P) is equal to i, has, in its neighborhood denoted N , a pixel
Q whose color component Ck′(Q) is equal to j.

Figure 2 shows NN = 7 different 3x3 neighborhoods N
considered to compute the color co-occurrence matrices.

For a given neighborhood, the image I can be characterized
by NM = 6 color co-occurrence matrices : MC1,C1 [I], MC2,C2 [I],
MC3,C3 [I], MC1,C2 [I], MC1,C3 [I] and MC2,C3 [I]. Since the matrices
MC2,C1 [I], MC3,C1 [I] and MC3,C2 [I] are respectively symmetric to
the matrices MC1,C2 [I], MC1,C3 [I] and MC2,C3 [I], they are not used.

As they measure the local interaction between pixels, the
color co-occurrence matrices are sensitive to significant diffe-
rences of spatial resolution. To decrease this sensitivity, it is ne-
cessary to normalize these matrices by the total co-occurrence
number ∑N−1

i=0 ∑N−1
j=0 MCk,Ck′ [I](i, j), where N is the quantifica-

tion level number of the color components. The normalized color
co-occurrence matrix mCk ,Ck′ [I](i, j) is defined by :

0 ˚ direction 90 ˚ direction 45 ˚ direction 135 ˚ direction
2-neighborhood 2-neighborhood 2-neighborhood 2-neighborhood

8-neighborhood 4-neighborhood 1 4-neighborhood 2

FIG. 2: 3x3 neighborhoods in which neighboring pixels are
labeled as gray.

mCk,Ck′ [I](i, j) =
MCk,Ck′ [I](i, j)

∑N−1
i=0 ∑N−1

j=0 MCk,Ck′ [I](i, j)
.

The color co-occurrence matrices characterize the color tex-
tures in the images. However, they cannot be easily exploited for
color texture classification because they contain a large amount
of information. To reduce it, while preserving the relevance of
these descriptors, Haralick proposes to use NH = 14 features,
denoted f 1

H to f 14
H , extracted from each matrix [14]. Conse-

quently, an image is here characterized by Nf = NM ×NH ×NS =
6× 14× 28 = 2352 color texture features x f , f = 1, . . . ,Nf (see
figure 3).
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FIG. 3: Color texture features.

Influence of the neighborhood on the selec-
tion of the most discriminating feature

First, we study the influence of the neighborhood N used
to process the color co-occurrence matrices on the selection of
the most discriminating texture feature. Indeed, since the total
number Nf of color texture features is very high, it is interesting
to select the most discriminating one and to observe the impact
of the neighborhood choice on the selection of this feature. This
selection is done by measuring its discriminating power.

Feature discriminating power
The discriminating power allows to sort the features accor-

ding to their ability to discriminate the different texture classes.
By considering each feature, the points characterizing the dif-
ferent classes form clusters projected on the corresponding axis.
We choose the measures of cluster separability and compactness
as being the discriminating power of each color texture feature.
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The selection of the most discriminating feature is doing
during a supervised learning scheme. At the first step of this lear-
ning, Nω learning images ωi, j (i = 1, . . . ,Nω ) which are repre-
sentative of each of the NT texture classes Tj ( j = 1, . . . ,NT ), are

interactively selected by the user. The color texture features x f
i, j

( f = 1, . . . ,Nf ) characterize each learning image ωi, j .
The measure of cluster compactness is defined by the within clus-
ter scatter value Σ f

C :

Σ f
C =

1
Nω ×NT

×
NT

∑
j=1

Nω

∑
i=1

(x f
i, j −m f

j )
2 (1)

where m f
j is the mean value of the f th feature computed with the

learning images ωi, j of the class Tj .
The measure of the cluster separability is defined by the between
cluster scatter value Σ f

S :

Σ f
S =

1
NT

×
NT

∑
j=1

(m f
j −m f )2 (2)

where m f is the mean value of the f th feature for all the classes.
Then, the informational criterion J f , which measures the discri-
minating power of each feature, is calculated and compared in
order to select the most discriminating one for NT texture classes.
The informational criterion J f is expressed as :

J f =
Σ f

S

Σ f
C +Σ f

S

(3)

When the clusters of points projected on the considered fea-
ture are well separated and compact, J f is close to 1. On the
other hand, when the clusters corresponding to texture classes
are mixed together, J f is close to 0.

Experimental results
In order to examine the influence of the neighborhood N

used to process the color co-occurrence matrices on the selection
of the most discriminating texture features, experimental results
are achieved with the color textures of the BarkTex database. Af-
ter having described this benchmark database, the results of the
selection of the three most discriminating color texture features
for each neighborhood N will be presented and analysed. We
will also examine the rate of well-classified images obtained with
each most discriminating feature, for each neighborhood N .

BarkTex database
Color images of the BarkTex database are equally divided

into 6 tree bark classes (see figure 4 : Betula pendula (T1), Fagus
silvatica (T2), Pica abies (T3), Pinus silvestris (T4), Quercus
robus (T5), Robinia pseudacacia (T6)). Each class regroups 68
images of size 128×192 yielding a collection of 408 images. To
build the learning database, we have extracted Nω = 32 learning
images ωi, j of each texture class Tj .
For the classification, 36 request images for each texture class Tj
are used and these request texture images are classified thanks to
the nearest neighbour classifier.

Most discriminating texture feature
Table 1 shows, for each neighborhood N , the three co-

lor texture features which maximize the discriminating power.
For example, by considering the 8-neighborhood, the most dis-
criminating feature is the eleventh Haralick feature f 11

H extrac-
ted from the color co-occurrence matrix MB,B processed in the
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FIG. 4: Examples of BarkTex images
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MatrixColor spaceNeighborhood N
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90 ˚ direction

0 ˚ direction

45 ˚ direction

135 ˚ direction

2-Neighborhood
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2-Neighborhood

Classi-
fication
result

43.06%

37.96%

43.98%

35.19%

34.72%

34.26%

39.81%

TAB. 1: The three most discriminating color texture features and
their associated discriminating power for each neighborhood N .

(R,G,B) space. The discriminating power of this feature is equal
to 0.673. The second most discriminating color texture feature,
for this neighborhood, is the eleventh Haralick feature f 11

H extrac-
ted from MY ′,h′UV processed in the (Y ′,C′

UV ,h′UV ) space whose
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discriminating power is equal to 0.6696.
This table shows also the rate of well-classified request

images obtained with the most discriminating feature, for each
neighborhood N . For example, this rate reaches 43.06% by
considering the eleventh Haralick feature f 11

H extracted from
the color co-occurrence matrix MB,B processed in the (R,G,B)
space.

Discussion
By examining table 1, we can conclude that among the 14

Haralick features, only f 8
H and f 11

H which are respectively the
sum and difference entropies, are selected whatever the conside-
red neighborhood. These two features have not been considered
by color texture classification procedures using Haralick features
and proposed by Palm [10] and by Drimbarean et al [1]. These
features should be taken into account by these procedures in or-
der to improve their results.

Moreover, it is remarkable that whatever the chosen neigh-
borhood, the eleventh Haralick feature f 11

H extracted from
MY ′,h′UV processed in the (Y ′,C′

UV ,h′UV ) space is always selec-
ted as one of the three most discriminating features among the
2352 candidate features.

Table 1 shows also that for the two 4-neighborhoods, the
three features with the highest discriminating power are the same
ones. So, the spatial arrangement of the neighbors in the 4-
neighborhood does not influence the selection of the most dis-
criminating features. The same conclusion arises for three of the
four considered 2-neighborhoods. Only the features selected by
considering the 0 ˚ direction are quite different from those deter-
mined by considering the three other directions. Indeed, since
the examined textures contain vertical patterns, we expect that
the 2-neighborhood based on 0 ˚ direction provides different re-
sults than those processed with the other directions.

Finally, by examining the classification results obtained
with the most discriminating feature, for each neighborhood N ,
we can notice that these classification results are very low. That
is why it is interesting to extend the analysis to the multidimen-
sional feature spaces.

Influence of the neighborhood on the selec-
tion of the most discriminating feature space

The texture features previously selected are the most dis-
criminating ones when they are considered individually, but the
space formed by these features is not necessarily the most discri-
minating for the different texture classes because these features
are often correlated.

We propose to determine the most discriminating feature
space thanks to an iterative selection procedure processed during
a supervised learning. This non-exhaustive procedure has given
very good results by selecting an hybrid color space adapted to
the considered images for color image segmentation [12].

Iterative selection
At each step d of the procedure, an informational criterion J

is calculated in order to measure the discriminating power of each
candidate feature space. At the beginning of this procedure (d =
1), the Nf one-dimensional candidate feature spaces, defined by
each of the Nf available color texture features, are considered.
The candidate feature which maximizes J is retained as being the
best one for discriminating the texture classes (see table 1). This
feature is selected at the first step and is associated at the second
step of the procedure (d = 2) to each of the (Nf − 1) remaining
candidate color texture features in order to constitute (Nf − 1)

two-dimensional candidate feature spaces. We consider that the
two-dimensional space which maximizes J is the best space for
discriminating the texture classes. . .

In order to only select color texture features which are not
correlated, we measure, at each step d ≥ 2 of the procedure, the
correlation between each of the available color texture features
and each of the (d − 1) other color texture features constituting
the selected (d − 1) dimensional space. The considered features
will be selected as candidate ones only if their correlation level
with the color texture features already selected is lower than a
threshold fixed by the user [12].

At each step d of the procedure and for each of the (Nf −
d + 1) d-dimensional candidate feature spaces, we define, for
the ith learning image ωi, j (i = 1, . . . ,Nω ) associated to the
texture class Tj ( j = 1, . . . ,NT ), a color texture feature vector

Xi, j = [x1
i, j, ...,x

d
i, j]

T
where xd

i, j is the dth color texture feature.
In order to measure the cluster compactness, defined by the wi-
thin cluster scatter matrix ΣC, equation 1 becomes :

ΣC =
1

Nω ×NT
×

NT

∑
j=1

Nω

∑
i=1

(Xi, j −Mj)(Xi, j −Mj)T (4)

where Mj = [m1
j , ...,m

d
j ]

T
is the mean vector of the d color tex-

ture features of the class Tj.
In order to compute the cluster separability, defined by the bet-
ween cluster scatter matrix ΣS, equation 2 becomes :

ΣS =
1

NT
×

NT

∑
j=1

(Mj −M)(Mj −M)T (5)

where M = [m1, ...,md ]T is the mean vector of the d color texture
features for all the classes.
The most discriminating feature space maximizes the informa-
tion criterion J derived from equation 3 :

J = trace
(
(ΣC +ΣS)

−1ΣS

)
(6)

We retain a very simple stopping criterion which is the num-
ber of classes less one in order to compute the selected feature
spaces with the same dimension.

Experimental results
In order to examine the influence of the neighborhood N

used to process the color co-occurrence matrices on the selec-
tion of the most discriminating feature space, experimental re-
sults are achieved with the BarkTex database. As it contains 6
texture classes, only the most discriminating 5-dimensional fea-
ture space is selected for each neighborhood N .

Most discriminating 5-dimensional feature space

Table 2 shows the most discriminating 5-dimensional fea-
ture space for each neighborhood N . For example, by conside-
ring the 8-neighborhood, the most discriminating 5-dimensional
feature space contains :

– the eleventh Haralick feature f 11
H extracted from the co-

lor co-occurrence matrix MB,B processed in the (R,G,B)
space,

– the tenth Haralick feature f 10
H extracted from MI1,I3 pro-

cessed in the (I1, I2, I3) space,
– the seventh Haralick feature f 7

H extracted from MI1,H3

processed in the (I1,S1,H3) space,
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72.22%

75%

64.35%
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54.17%

55.09%

56.02%

TAB. 2: The most discriminating 5-dimensional feature spaces
and the associated rate of well-classified images for each neigh-

borhood N .

– the nineth Haralick feature f 9
H extracted from ML∗,u∗ pro-

cessed in the (L∗,u∗,v∗) space,
– and the fifth Haralick feature f 5

H extracted from MI4,I4

processed in the (I4,S3,H2) space.
The discriminating power of this 5-dimensional feature space is
equal to 2.01415 and the rate of well-classified request images
obtained with this feature space reaches 72.22%.

Discussion
By examining table 2, we can firstly notice the adequacy

between the discriminating power of the selected feature space
and the rate of well-classified images since the higher the discri-
minating power is : the higher the well classification rate is.

Then, table 2 confirms that the 2-neighborhood based on
0 ˚ direction provides different results than those obtained with
the other directions. Indeed, the 5-dimensional feature space
selected by considering the 0 ˚ direction provides the highest
discriminating power (2.23078) and the highest rate of well-
classified request images (76.39%). The second best classifica-
tion result is obtained by considering the 4-neighborhood1 which
also contains the 0 ˚ direction neighborhood and the third one is
obtained with the 8-neighborhood which also contains the hori-
zontal direction.

The choice of the neighborhood is consequently very im-
portant since it allows to improve significantly the classification
results.

Influence of the neighborhood on the classi-
fication results

In order to study the real influence of the neighborhood used
to process the color co-occurrence matrices on the classification
results, we propose to examine the classification results obtained
with the same feature space but with different neighborhoods.

Experimental results
The influence of the neighborhood is studied by considering

two different feature spaces. The first one, denoted ”feature space
1”, is the most discriminating feature space selected for the 8-
neighborhood (see table 2) and the second one, denoted ”feature
space 2”, is the most discriminating feature space selected for the
2-neighborhood based on 0 ˚ direction (see table 2).

Classification results obtained with the feature spaces 1
and 2

2-Neighborhood

2-Neighborhood

2-Neighborhood

2-Neighborhood

135 ˚ direction

45 ˚ direction

90 ˚ direction

0 ˚ direction

4-Neighborhood2

4-Neighborhood1

8-Neighborhood
2.01415

2.10776

1.81922

2.04222

1.68695

1.68107

1.68933

72.22%

74.07%

62.04%

66.20%

56.94%

56.02%

56.02%

1.31091

58.33%

1.73834

70.37%

1.06292

50.93%

2.23078

76.39%

0.890675

41.20%

0.887254

43.52%

0.878152

40.28%

Neighborhood N

results
classification

power and
discriminating
Feature space 1

results
classification

power and
discriminating
Feature space 2

TAB. 3: The classification results obtained with the feature
spaces 1 and 2 for each neighborhood N .

Table 3 shows the rates of well-classified images obtai-
ned by considering the feature spaces 1 and 2. It indicates also
the discriminating power associated to the considered feature
space for each neighborhood N . For example, the rate of well-
classified images obtained by considering the feature space 1
reaches 74.07% for the 4-neighborhood1 and the discrimina-
ting power of this feature space is 2.10776 when the color co-
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occurrence matrices are processed with this 4-neighborhood.

Discussion
By examining the obtained results, we can notice the ade-

quacy between the discriminating power of the feature space and
the rate of well-classified images.

Table 3 also shows that the neighborhoods which contain
horizontal neighbors provide the best discrimination between
the considered texture classes : for the feature space 1, the
best rates of well-classified request images are obtained with
the 4-neighborhood1 (74.07%), then with the 8-neighborhood
(72.22%) and thirdly by considering the 0 ˚ direction (66.20%).
For the feature space 2, the best classification results are
obtained with the 0 ˚ direction (76.39%), then with the 4-
neighborhood1 (70.37%) and thirdly by considering the 8-
neighborhood (58.33%).

Conclusion
In this paper, we have presented experimental works in or-

der to evaluate the influence of the neighborhood used to process
the color co-occurrence matrices on the quality of texture analy-
sis.
For this original purpose, we have firstly evaluated the relation-
ships between the choice of the neighborhood and the selection
of the most discriminating texture feature. We have also experi-
mentally verified that the most discriminating feature space, built
by using an iterative selection procedure, depends on the cho-
sen neighborhood and finally we have studied the impact of the
neighborhood choice on the classification results by using the
same feature space whatever the considered neighborhood.
Experimental results achieved with the Barktek database have
first shown the adequacy between the discriminating power of
the selected feature space and the rate of well-classified images.
We have also seen that the choice of the neighborhood does not
highly influence the selection of the most discriminating feature
but has a significant impact on the quality of discrimination bet-
ween the textures. Indeed, we have worked with textures which
contain vertical patterns and have shown that the best classifi-
cation results have been obtained with the neighborhoods which
contain the horizontal direction. The choice of the neighborhood
depends consequently of the analysed textures.
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