
Unsupervised Image Segmentation based on Texems
for Hyperspectral data
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Abstract
There is no doubt about how useful and valuable the in-

formation provided by the hyperspectral sensors can be. Image
segmentation procedures can take advantage of this information
to increase the ability for separating different textures in an im-
age. A multiscale approach for segmenting hyperspectral images
is presented in this work. The method is based on the recently
proposed texem model which has been extended in this work to
spaces of high dimensionality. Furthermore, the hyperspectral
extension of the texem-based segmentation would be computa-
tionally impracticable without a prior step for reducing the di-
mensionality. Thus, a band selection process based on the mutual
information among bands has also been applied. The complete
process is particularly useful in applications for remote sensing
or quality inspection tasks.

Introduction
The benefits of hyperspectral imaging in several disciplines

are becoming relevant for many emerging applications. Com-
paring with grey or colour images, multi or hyperspectral sen-
sors acquire data from a much wider range of wavelengths in the
spectrum and these data are being introduced in important and
demanding application fields like remote sensing, medical imag-
ing, product quality inspection, fine arts, etc. Image segmenta-
tion on these data means to detect salient regions in a hyperspec-
tral image and isolate them as accurate as possible. This purpose
presents two main problems:

• Firstly, hyperspectral imaging involves a huge amount of
information, thus we have to face with the problem of se-
lecting only the useful information avoiding redundancies.

• Secondly, the problem of segmentation strictly speaking is
still a challenging question whatever the input image would
be. Thus, it will be particularly hard in hyperspectral data
where, in addition to the traditional segmentation difficul-
ties, researchers have to face with the complicated task of
managing the amount of information that a hyperspectral
image involves.

The aim of the dimensionality reduction techniques is to
manage a representation of the hyperspectral data avoiding as
many irrelevant and redundant features as possible. In this way,
further applications would take profit from a dimensionality re-
duction in terms of computational or time savings and, in many
cases, in terms of accuracy. In this sense, authors in [5] pre-
sented a band selection algorithm based on information theory
measures. In comparison with other relevant methods in the liter-
ature, their algorithm demonstrated a high performance, achiev-
ing good classification results and a particularly better consis-
tency among all the tested databases. A more detailed explana-
tion for this band selection technique will be given in the next
section.

The recently proposed texem (texture exemplar) model has
been successfully applied on image segmentation of colour im-
ages [8][9]. It performs a multiscale approach which is based
on the assumption that a given image can be generated from a
collection of image patches. An immediate extension that makes
this approach suitable for segmenting high dimensional spaces is
proposed in this paper.

This work is focused on solving the whole process, that
is, from the data acquired by the hyperspectral sensors, we will
firstly obtain a notably reduced subset of bands. A second step
will consist of a procedure that segments this reduced represen-
tation. Due to the high variability of the input images, where
labelled data usually are hard to obtain, the entire process must
be done in an unsupervised way. Experimental results will show
that the proposed method achieves accurate results with well-
outlined boundaries in hyperspectral images.

Band Selection approach
Obviously, hyperspectral images provide much richer spec-

tral information than grey-level or colour images. However, this
advantage also comes with the drawback of dealing with large
amounts of information. In order to cope with such amount of
information, a usual technique consists of applying a dimension-
ality reduction to select and keep the relevant information. Thus,
in this work, the WaLuMI method [5] was applied to choose a
subset of relevant instances from the initial set of bands.

WaLuMI is a dimensionality reduction method that uses
a distance based on mutual information to discriminate among
bands. Mutual information is not only widely used as a crite-
rion for measuring the degree of independence between random
variables, but it also measures how much a certain variable can
explain the information content about another variable, being a
generalised correlation measure [1, 7]. Thus, the following mea-
sure of similarity between two random variables Xi and Xj (rep-
resenting the i and j spectral bands) will be used as a relevance
criterion,

NI(Xi,Xj) =
2 · I(Xi,Xj)

H(Xi)+H(Xj)
, (1)

where H(·) denotes the entropy of a random variable. Since the
mutual information I is not a suitable measure of similarity by
itself [5], we use NI as a normalised measure of the mutual in-
formation. Finally, this NI takes part in the distance measure as
follows [2]:

DNI(Xi,Xj) =
(

1−
√

NI(Xi,Xj)
)2

(2)

Starting from a set of L input bands, a hierarchical clus-
tering process is performed in order to form the Q final subsets
of bands (Q � L). This clustering process is based on a ma-
trix of distances that is updated when two clusters are merged
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following the Ward’s linkage rule [6]. This linkage strategy has
the property of producing minimum variance partitions, group-
ing the pair of clusters that minimise the increment in the square
error of the whole partition. The error used to this calculation
is the intra-cluster dispersion. Thus, this method is also called
minimum variance clustering, because it pursues to form each
possible group in a manner that minimises the loss associated
with each grouping (internal cohesion). Several studies point out
that this method outperforms other hierarchical clustering meth-
ods [3], but, in our case, the process also helps us to form groups
with low variance in their level of similarity.

Briefly summarising the linkage strategy, let us suppose that
clusters Cr and Cs are merged. The general expression for the
distance between the new cluster (Cr,Cs) and any other cluster
(Ck) is defined as:

D[(Ck),(Cr,Cs)] = α ·D(Ck,Cr) +
β ·D(Ck,Cs) +
γ ·D(Cr ,Cs) +
δ · |D(Ck,Cr)−D(Ck,Cs)|,

(3)

where α , β , γ and δ are the merging coefficients. Ward’s inter-
cluster distance results from the following coefficients,

α =
nr +nk

nr +ns +nk
, β =

ns +nk

nr +ns +nk
, γ =

−nk

nr +ns +nk
, δ = /0,

where ni is the number of instances in group i.

Thus, summarising the entire strategy in several steps:

1. The algorithm starts with the disjoint partition where each
cluster is formed as a single pattern (hyperspectral band).
At this step, the distance matrix ML×L is initialised by
means of the dissimilarity measure described on equation
(2).

2. After that, the algorithm looks for the two most similar
clusters, i.e., those clusters that will have the minimum dis-
tance value in the distance matrix.

3. Then, these two clusters are merged into one. Matrix ML×L

is updated using expression (3) and, therefore, ML×L turns
into M(L−1)×(L−1). The rows/columns corresponding to the
merged clusters are deleted and a row/column for the new
cluster is added.

4. This process is repeated until the Q number of desired clus-
ters are obtained (MQ×Q). The resulting mutually exclusive
clusters represent groups of highly correlated bands, and
bands from two different clusters will have low correlation.

The clustering is part of an information reduction process
and, at the end of the clustering process, a representative band
for each cluster is selected, which will substitute all bands in the
cluster, at the lowest possible cost in terms of information loss.
Thus, let us consider now a resulting cluster C with R bands. A
weight of each band Xi ∈C is defined as,

Wi =
1
R ∑

j∈C, j �=i

1
ε +DNI(Xi,Xj)2 (4)

where ε is a very small positive value to avoid singular values.
The representative band from each group is selected as the band
with the highest Wi in the cluster. In this way, we choose the
band in the cluster with the highest average correlation (mutual
information) with regard to the other bands in the cluster. It is
equivalent to select the band that better predicts the information

content of the other bands in the cluster. The more mutual infor-
mation two random variables share, the better the prediction of
one variable about the other one.

The selected representatives will constitute a subset of
bands used in representation of the whole original set.

Extending Texems to Hyperspectral data
According to the texem model [9], an image is assumed

to be generated by superposition of a small number of image
patches of various sizes with certain added variations. In order
to extract the texems from a sample image, it is broken down
into a set Z of overlapping patches. If just one band is consid-
ered (grey-level texems), a texem is defined by a mean μ and a
variance ω . However, for colour texems, pixels are assumed to
be statistically independent in each texem with Gaussian distri-
bution at each pixel position in the texem. Assuming K texems
in the image, K � ‖Z‖, patch i in set Z can be generated from a
texem and formulated as a joint probability assuming neighbour-
ing pixels are statistically conditionally independent:

p(Zi|θk) = p(Zi|μk,ωk) = ∏
j∈S

N(Z j,i; μ j,k,ω j,k) (5)

where θk denotes the μk and ωk parameters for the kth texem.
N(·) is a Gaussian distribution over Z j,i, S is the patch pixel grid,
μ j,k and ω j,k denote mean and variance at the jth pixel position
in the kth texem. The mixture model is given by:

p(Zi|Θ) =
K

∑
k=1

p(Zi|θk)αk (6)

where Θ = (α1, . . . ,αK ,θ1, . . . ,θK), and αk is the a priori prob-
ability of the kth texem. The Expectation-Maximisation algo-
rithm is used to estimate the model parameters. The E-step in-
volves a soft-assignment of each patch Zi to texems using Bayes’
rule. The M-step finishes each iteration updating the parameters.
These iterations are repeated until the estimations stabilise or a
pre-specified threshold fulfils. Assignations of patches to texems
are performed in a three-dimensional space.

An extension of the texem model to multispectral images
has been developed. This extension consists of, instead of pixels
Zi j = (Ri j,Gi j,Bi j) being defined in a three-dimensional colour
model, now pixels Zi j are defined in a Q-dimensional space

Zi j = (b1
i j,b

2
i j, . . . ,b

Q
i j), being bk

i j the value of the pixel Zi j in the
spectral band k. Therefore, normal distributions are now defined
in a multispectral space of Q bands1.

Texem model has been successfully applied as an image
segmentation technique [8] and the main objective of segmenting
hyperspectral data requires the immediate extension of the colour
texem model to multi-band spaces. However, without any previ-
ous dimensionality reduction stage, this extension would involve
working with hundreds of bands and the algorithm would not be
practicable at all. Thus, an input data reduction to a reasonable
set of bands should be performed before applying the multi-band
extension of the texem algorithm for segmenting hyperspectral
images.

Experiments and Results
Three databases have been used to carry out this experimen-

tal part (see [5] for a detailed description):

1. Table 1, 1st column: 92AV3C database, 145 X 145 pixels,
220 bands and 17 classes. As described in [4], several

1Note that, as the previous section describes, we had reduced the orig-
inal dimensionality from L to Q bands.
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bands should be discarded from this database due to the
effect of the atmospheric-absorption. Thus, 185 out of the
220 bands were used, discarding the lower signal-noise ra-
tio bands.

2. Table 1, 2nd column: HyMap database, 700 X 670 pixels,
128 bands and 7 classes. In this case, 126 bands were used,
discarding also the lower signal-noise ratio bands.

3. Table 1, 3rd column: VIS database is an example of the ap-
plication of hyperspectral imaging to other purposes differ-
ent from remote sensing. It contains images of orange fruits
with several defects (rot, trip, overripe and scratch) in the
visible (676 X 516 pixels, 33 bands). No band was dis-
carded in this case.

In order to test the performance of the described process,
several subsets of bands have been obtained from the input data
by means of the feature selection method. The segmentation al-
gorithm has been applied to each reduced representation of the
original set to properly illustrate the results obtained. Thus, in
table 1, the first row shows a RGB composition of the input im-
ages, the second row shows the results when the reduced subset
(RSUB) is made up of four spectral bands and the segmenta-
tion algorithm looks for four different regions (REGS), the third
row shows the results for RSUB=8 and REGS=6 and, finally, the
fourth row shows the results for RSUB=8 and REGS=12. All the
regions shown in the results are painted with random colours.

It is worth mentioning that the WaLuMI method with the
previously described databases were used in [5]. This method
reached satisfactory classification rates with four bands and it
was consolidated on the plate of the classification curve with
eight bands. That is the reason for choosing RSUB=4 and
RSUB=8 in the feature selection algorithm.

A n× n grid is used in the texem model when the Gaus-
sian distributions are calculated. We use a 1×1 grid in order to
obtain well-outlined boundaries. However, although we manage
accurate edges, the segmentation algorithm seems to be slightly
noise-influenced. Better intra-region homogeneities without an
important loss of accuracy in the boundaries should be achieved
if the grid becomes a bit larger in size.

Conclusions
An unsupervised segmentation procedure for hyperspectral

data based on the texem model has been presented. Before seg-
menting, a selection of the most relevant bands by means of in-
formation theoretical-based measures has been done in order to
achieve a practical procedure.

The algorithm gives quite satisfactory results, managing ac-
curate edges. However, it seems to be slightly noise-influenced
due to the grid size used. This drawback is not very important if
the number of input bands and texems is small. Nevetheless, it
becomes worse when any of these parametres increases. Future
work will take into account this question, producing new seg-
mentation results with larger number of texems and/or bands by
means of a bit larger grid.

Due to the fact that grey-level texems are defined by a mean
and a variance (in contrast to colour texems where pixels are as-
sumed to be statistically independent), as a future work we are
studying the possibility of considering dependencies among the
pixels in a texem because, from our point of view, it would obtain
a better representation of the image textures.
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92AV3C DB HyMap DB Oranges DB

First column for AVIRIS (92AV3C), second for HyMap spectrometer and third for an orange image from VIS collection. First
row shows RGB compositions of each database. Results on second, third and fourth row correspond to RSUB=4/REGS=4,
RSUB=8/REGS=6 and RSUB=8/REGS=12 respectively.
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