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Abstract
In this paper, we use Riemann geometry to develop a gen-

eral framework for the characterization of and mapping between
color spaces. Within this framework we show how to construct
maps, so-called isometries, between two color spaces that pre-
serve color differences. We illustrate applications of this frame-
work by constructing a uniform color space and developing algo-
rithms for color reproduction on different printers and correction
of color-vision for color-weak observers.

Introduction
Many traditional color science methods are based on sta-

tistical averages. The most well-known is the standard observer
describing the basic color vision properties of an observer with
average color vision. This is useful in applications like the eval-
uation of color reproduction properties in the printing industry
where comparison of methods or products on average are re-
quired.

It is less useful where applications require more exact de-
scriptions of individual properties or where the target is another
device like a printer. Obviously methods using the standard ob-
server fail completely for problems involving color blindness.
For these applications more precise, tailored procedures are nec-
essary. Similar problems are handled in the framework of color
management systems. But methods used there are of limited use
when human observers are the ”devices” to be handled since it
is impossible to ”calibrate” a human observer by measuring in-
put/output value pairs.

Thus, in the widest sense of color reproduction or color
management, one has to consider mappings between various de-
vices and individual human observers. In particular, one of the
most natural, and therefore useful maps, is a map which pre-
serves subjective color-differences. In the language of Riemann
geometry, such a map is called an isometry.

In general it is non-trivial to construct an isometry. In fact,
a map which preserves small color-differences around one point
can be easily obtained by linear algebra, since locally the map
can be represented by its piece-wise linear approximation at the
point, which can be found using the local isometry condition, or
simply matching the threshold ellipses/ellipsoides at the preim-
age point and the image point.

However, a map preserving color-differences at every point
(an isometry) between two spaces and a global isometry or a map
which preserves large color-differences are usually more diffi-
cult to construct since the above piece-wise linear approximation
should take a form of an affine transformation in global coordi-
nates. The affine or parallel shift information after the mapping is
not easy to come by. Another, and more serious problem, is that
the map between color spaces are usually assumed to be mono-
tonic for simplicity such as in the ICC profiles. When the map
is not monotonic the inverse map is not injective or one-to-many
and thus hard to find.

In this paper, we introduce Riemann geometry as a tool to

compute geometrical descriptions of color spaces from measure-
ment data and mapping between color spaces.

The input data are descriptors of the local properties of the
color space under investigation. The best known examples are
the MacAdam ellipses. (see [1], [2], [3] and [4]). Other examples
are measurements of the color coordinates of a printed test chart
or descriptors computed from other color systems.

We first show how to compute an isometry between a color
space and the Euclidean space. From a geometrical point of view,
a coordinate system is the most straightforward characteristic of a
color space. Another characteristic object of a geometrical space
are its straight lines, or geodesics in Riemann spaces. From lo-
cal threshold measurements the geodesics can be calculated by
solving differential equations known as the geodesic equations.
We will show how to obtain a ”polar coordinate system” in a
color space using the geodesics. The correspondence of this sys-
tem with the polar coordinate system in the Euclidean space then
provides us an isometry between the two spaces. As an example
of this method we show the construction of uniform space for
CIELUV.

Then we show how to build an isometry between two color
spaces based on the above method. In particular, once the
geodesic polar coordinate systems are obtained for these two
color spaces, one can easily read out the isometry between these
two color spaces.

As the first application of the framework, we show a color
reproduction on two printers, MP790 by Epson and PM970C by
Canon. Here the isometries between the working color spaces of
different devices provide us a way to handle device -independent
color reproduction.

Apart from investigations involving color blindness it is of-
ten ignored that there is also a variation in the color vision prop-
erties between observers with full color vision. Problems involv-
ing color weakness have received little attention in color tech-
nology. As the second applications, we will therefore illustrate
how to characterize the color spaces of color normal observers
and a color weak observer. An exact correction method is ob-
tained using an isometry between this two color spaces called a
color-weak map.

The framework described here has also applications in other
fields. In [5], for example, the related model of a fibre bundle of
the color spaces was used in image processing.

Riemann Geometry for Color Spaces
Intuitively a Riemann space is a generalization of Euclidean

flat space where the distance between two points is measured
in the same way everywhere. An intuitive way to understand
how this can be generalized to a Riemann space is to consider
a surface S like the unit sphere. Locally a neighborhood of a
point x on S looks like a plane and can be approximated by the
tangent plane TxS. On this tangent plane we have a positive def-
inite matrix G(x) defining the scalar product between tangent
vectors u,v ∈ TxS as uT G(x)v. This scalar product defines an arc-
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length on the Riemann space in the same way as in Euclidean
geometry.

A formal definition of a Riemann space is a space S with a
positive definite matrix G(x) smoothly defined on every point
x such that the infinitesimal distance near x is measured by
(dx,dx)G = dxT G(x)dx. Let x = (x1, ...,xn)T ,G(x) = [gi j], then

(dx,dx)G = gi jdxidx j

(where the Einstein convention is used to sum over indices that
appear as both subscripts and superscripts as aibi = ∑i aibi).
Such a Riemann space is usually denoted as S = (Rn,G). The
global distance of any two vectors x,x′ in S is measured as
follows. If a spatial curve x(t) = (x1, · · · ,xn)T in a Riemann
space (Rn,G) is smooth for a ≤ t ≤ b,x(a) = x,x(b) = x′, i.e.,
if ẋi = dx j

dt exist and are continuous, then the integral

l =
∫ b

a

√
gi j ẋiẋ jdt G = (gi j) (1)

exists, and l is the length of the curve between x(a) = x and
x(b) = x′.

In Euclidean geometry the ordinary straight lines are the
shortest curves connecting points. The corresponding shortest
curves in a Riemann space are the geodesics. The distance
d(x,x′) between x and x′ is defined as the minimum of the above
lengths among all possible smooth curves connecting the two
points. The curve γ(t) that has the shortest length is called the
geodesic between the two points.

If we denote the elements of the matrix G by gi j and the
elements of the inverse matrix G−1 by gi j then it can be shown
that the geodesic γ(t) =

(
x1(t), . . .xn(t)

)T are solutions of the
differential equations:

ẍk(t)+ ẋi(t)ẋ j(t)Γk
i j(x(t)) = 0 (2)

where ẍk(t) = d2xk(t)
dt2 and

Γk
i j(x) =

1
2

gkm
(

∂gmi

∂x j +
∂gm j

∂xi − ∂gi j

∂xm

)
. (3)

The Γk
i j(x) are known as Christoffel symbols. Once we know the

Riemann metric G, the geodesics are obtained using a numerical
differential equation solver.

Obtaining a Riemann metric
We saw that the geometry is completely defined by the ma-

trices G(x) and if we want to apply methods from Riemann ge-
ometry then we need access to these matrices. We will use two
methods to obtain the Riemann metric of a color space: direct
measurement of thresholds and measurement of Jacobians of
color mappings.

Using measured threshold data
In a typical application we use color matching experiments

to measure the just-noticeable-difference (jnd) of an observer
in different directions from N points xν ,ν = 1 . . .N in a color
space C. Using these measurements we fit an ellipsoid and use
this ellipsoid to define the local metric G(xν ). Assume at point x
the jnd threshold ellipses are with the long axis a, the short axis b
and the angle θ from the long axis to the axis of abscissa . Then
the Riemann metric matrix G is given by

G =
(

g11 g12
g21 g22

)
with

g11 =
b2 cos2 θ +a2 sin2 θ

a2b2

g12 = g21 =
−2sinθ cosθ (a2 −b2)

a2b2

g22 =
b2 sin2 θ +a2 cos2 θ

a2b2

Using Jacobian of a color map
For applications where we have a n-D color space C with

Cartessian coordinates, which can be regarded as an Euclidean
space R

n. A map f of C which mappes a color vector x to a color
vector y = f (x) induced a Riemann metric of C as

G(x) = D f (x)T D f (x) (4)

where D f (x) is the Jacobian matrix of f at the point x. This
metric then defines C = (Rn,G) as a Riemann space.

Color-Difference Preservation: Isometries
An isometry is a map between two Riemann spaces that pre-

serves distances between two points. Isometries between colors
spaces preserve color-differences and this is the reason why they
play an important role in color science and engineering.

We introduce two definitions of an isometry, one local and
another global. We define a local isometry as a map between
color spaces which preserves the jnd threshold or the Riemann
metric at every point

f : C1
∼−→ C2 (5)

x �−→ y (6)

G1(x) = DT
f (x)G2(y)D f (x) (7)

where G1,G2 are the Riemann metrics of C1 and C2.
A global isometry, on the other hand, is a map which pre-

serves all color differences

f : C1
∼−→ C2 (8)

x �−→ y (9)

d1(x,x′) = d2(y,y′) (10)

where d1,d2 are the distances in C1 and C2.
It can be shown that a local isometry is also a global isom-

etry and vice versa[6]. This means that if one can preserve the
threshold ellipses or ellipsoids everywhere as in (7), then large
color differences will also be preserved.

Uniformization: Isometry onto Euclidean
Spaces

The simplest Riemann space is a Euclidean space where
the Riemann metric defines the Euclidean distance. We will
simplify the construction of isometries between color spaces by
first considering the case where one space is a Euclidean space:
u : C = (Rn,G) −→U = (Rn, In). In terms of color engineering,
such a space with Euclidean metric is called uniformation color
space (UCS), and we can think of it as a connection space. We
will call this isometry a uniformization map of C.

In [6] it was shown how, using a geodesic grid, one can
build a uniformization map. This algorithm works as follows.
First choose a point as the origin O, then draw geodesics ema-
nating from O, with equal angle increments measured by the Rie-
mann metric at O. Next connect the points of the same distance
from O on the neighboring geodesics. This gives a curvillinear
coordinate grid on the Riemann space similar to the coordinate
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system on the sphere with the north (or south) pole and the longi-
tude/latitude coordinates. This generalized polar coordinate sys-
tem has the geodesics as the radius lines and the equal-distance
lines as the concentric circles. These coordinates are called Rie-
mann coordinates or normal coordinates.

Figure 1. Mapping from color space to Euclidean space

The isometry between the color space and the Euclidean
space, as a coordinate transform, can be read out directly from
the geodesic chart of the color space. In particular, a point in the
color space with the Cartesian coordinates e.g. P = (s,t) corre-
sponds to the point in the Euclidean space with polar coordinates
P′ = (ρ,θ ) where ρ is the geodesic distance from P to the origin
O and θ is the angle between the geodesic of zero degree to the
geodesic from P to O. The computation of the inverse map is
obviously also trivial.

Example: uniformization of CIELUV
Here we illustrate this strategy computing the uniformiza-

tion of CIELUV space. We construct UCS of CIELUV based on
the MacAdam ellipses. The origin is chosen as the white point
under D65. The results are shown in Figures 2 and 3. In Fig-
ure 2 we plot the geodesic grid as the Riemann coordinates. We
apply the coordinate transform from the geodesic coordinates in
the CIELUV space to the polar coordinates in the UCS thus es-
tablishing the uniformization map from CIELUV to the UCS. In
Figure 3, the threshold ellipses as the images of the MacAdam
ellipses after uniformization are plotted also in CIELUV. It can
be observed that local uniformity of the space has been improved
significantly.

Figure 2. Riemann coordinates of the CIELUV space

Building Isometries between Color Spaces
Using the Riemann coordinates of a color space, introduced

above, we can explicitly build an isometry between any two color
spaces.

Figure 3. Thresholds of the CIELUV after uniformization

Assume we have two color spaces, which could be a color
space of a device or the perception color space of a human ob-
server.

Let C1 be the first color space, we denote it as Riemann
space (C1,G1), C2 the second color space denoted as Riemann
space (C2,G2), U is an Euclidean space and its Riemann space
representation is (U, I) with I as the unit matrix, u1 : C1 −→ U
the uniformation map of C1, u2 : C2 −→U the uniformation map
of C2.

An isometry f : C1 −→ C2 between C1 and C2 can then be
constructed as shown in the following commutative diagram.

C1

u1
��
��

��
��

�

f
�� C2

u2
����
��
��
�

U

The map constructed as

f : C1 −→ C2 (11)

f = u−1
2 ◦u1 (12)

is an isometry since u1,u2 are isometries so is their composition.
The isometry between two different color spaces is obtained

as follows: First a pair of corresponding points, one from each
space, is selected. These points are selected as the origins in each
color spaces. In fact, a different choice of the origin will intro-
duce a parallel shift in the coordinate transform. Next a geodesic
coordinate system in each of the color spaces is constructed by
using the geodesic grids from the previous section. This gives
two coordinate systems similar to the polar coordinate system
in the plane. Using these two coordinate systems we can map
points in one system to corresponding points in the other sys-
tem. In fact, the isometry can be computed very easily. Since
every point in each space has its own Riemann coordinates al-
ready given, to look for its image at the other space, one only
needs to look for the point in the other space which has the same
Riemann coordinates.

Application to Color Reproduction
Here we use two printers: an PM-970C by Canon and an

MP790 by Epson. To derive the Riemann metrics, first we use
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the color samples shown in Fig. 4 in their CIELAB coordinates.
Measurements of the outputs of the color-samples by the two
printers are plotted in CIELAB space in Fig.5 and Fig. 6. These
outputs are used to estimate the Jacobian matrices of the maps
from the input space to the color spaces of each printer at the
measured points. Then Riemann metrics for these two color
spaces are obtained using the Jacobian matrices as shown in (4).

Next the Riemann coordinates of both spaces are obtained
using geodesic grids. The simple example of coordinate systems
on the sphere shows that it may not be possible to construct one
global coordinates for the whole Riemann space. It is therefore
often necessary to use several local but compatible coordinates
in parallel. Besides that, parallel computations are desirable for
fast implementations. We used a multi-start strategy to build the
Riemann coordinates. These local coordinate systems are shown
in Fig. 7 and Fig. 8. Afterwards an isometry between these color
color spaces is obtained.
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Figure 4. Color-samples in CIELAB to estimate Riemann metric
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Figure 5. Measurement of color-samples output by PM970C

We illustrate an application of this isometry by showing how
to simulate the output of one printer on a second printer. The
goal is to reproduce the output of the MP790 on the PM-970C.
As a color-target used for color reproduction we use the colors
shown in Fig. 9. Printing these colors on the two printers results
in the outputs in Fig. 10. Their CIELAB coordinates are plotted
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Figure 6. Measurementof color-samples ouput by MP790
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Figure 7. Riemann coordinates system of PM-970C in CIELAB

in Fig. 11. It can be orserved that the ouputs of two printers of
the same color-targets are quite different.

To test color reproduction we now fix the output of the
MP790 and reproduce its output on the PM-970C. In order to
do that, the input to PM-970C is transformed by the inverse map
of the above isometry. The reproduction of the output of MP790
by PM-970C is shown in Fig. 12. Measurements of all three out-
puts, one of MP790, two of PM-970C before and after applying
the inverse isometry are plotted in CIELAB Fig. 13. The output
of PM-970C with its input transformed produced much closer
color reproduction of MP790 than without.

Application to color-weak correction
Now we show an application of the proposed framework for

correction of color-weak observers[8].
The jnd thresholds for a color-weak observer and an average

of 45 color-normal observers are shown in Fig. 14 and Fig. 15
respectively.

The Riemann coordinates for the color spaces of color-
normal and color-weak observers are obtained by geodesic grids
with the origin as white-point under D65. They are shown in
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Figure 8. Riemann coordinates system of MP790 in CIELAB

Figure 9. Color targets used for color-reproduction

Fig. 16 and Fig. 17 respectively.
The isometry defined from the color-normal space to the

color-weak space is called a color-weak map [8].
Applying this color-weak map to input images, color-

normal observers can experience the simulated images which the
color-weak observer actually perceive. On the other hand, apply-
ing the inverse map of the color-weak map to the images before
showing to the color-weak observer, one can present to him the
same color stimuli perceived by color-normal observers.

Conclusions
We introduced Riemann Geometry as a tool to quantify

properties of color spaces of individual observers or devices. In
particular, the framework is used to show how to create color-
difference preserving mappings between different color spaces in
the form of geodesic coordinates. This framework is applied to
build a uniform color space of CIELUV space, to improve color
reproduction between two printers and correction and simulation
of color vision for color-normal and color-weak observers.
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Figure 12. Reproduction of output of MP790 by PM970C
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Figure 13. Output measurement of MP790 and reproduction by PM970C
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Figure 14. Threshold ellipses of color-normal observers
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Figure 15. Threshold ellipses of a color-weak observer

Figure 16. Riemann coordinates for observers with normal color vision

Figure 17. Riemann coordinates for an observer with color-weak vision
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