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University (Sweden)

Abstract
Using ordinary digital cameras as relatively cheap mea-

surement devices for estimating spectral color properties has be-
come an interesting alternative to making pointwise high pre-
cision spectral measurements with special equipments like pho-
tospectrometers. The results obtained with these methods can-
not compete with the quality of the traditional high resolution
devices but they are very attractive since the equipment is rela-
tively cheap and instant measurements are obtained for millions
of measurement points.

In this paper we investigate the problem of estimating re-
flectance spectra from measurements taken with ordinary digi-
tal RGB cameras. We study the effects of using multiple illu-
minations and treat the estimation of the reflectance spectra as
a regression or a statistical inversion problem. We use both,
linear- and non-linear estimation methods where we focus on
using reproducing kernels to avoid explicit formulation of non-
linearities. We also include non-linear conditions based on the
properties of the reflection spectra. Munsell Matte color and
Pantone are used as data sets to support the proposed methods.
The experiments show that the proposed methods improve the es-
timation results when compared to standard linear methods.

Introduction
This study considers the estimation of reflectance spectra

from the responses of color recording device. Reflectance infor-
mation is independent of device and illumination and therefore
it can be beneficial for several applications. Some examples are
color calibration of devices and quality control applications. It
has been also used in art painting recording [1]. Typical devices
used in these applications are digital cameras and color scanners.

The estimation models for digital camera or scanner data
can be constructed using the same methods. The properties of
incoming spectra are usually more varied for the digital cam-
era. For the digital camera, there is also an additional problem
of largely varying recording illumination. Possibility to measure
the device responses of object under different illuminations can
be also used as an asset to increase the accuracy of estimations
[3].

In this paper we continue to investigate the problem of es-
timating reflectance spectra from multiple illumination measure-
ments taken with a digital RGB-camera. We use both, linear- and
non-linear estimation methods and introduce non-linear transfor-
mation based on the properties of the reflectance spectra.

Estimation methods
Digital color recording devices capture the spectrum of

physical stimuli by filtering the incoming color signal through
color filters with different spectral transmittances. In the follow-
ing we denote matrices as capital letters and vectors as boldface
letters. Camera model for sensor responses can be approximated
as

x = W r, (1)

where x ∈ R
k is the response vector, W ∈ R

k×n is the response
matrix and r ∈ [0,1]n is the reflectance. The response matrix
W depends on both, illumination and spectral sensitivities. In
this study we use an ordinary RGB-camera with one illumina-
tion source (k = 3) or two illumination sources (k = 6). The goal
of this study is to find inversion operator L : R

k → [0,1]n : x → r̂
which provides an estimation of the sampled reflectance. We
treat the estimation of reflectance spectra r as a regression prob-
lem or an inverse problem.

The standard methods used for estimation are linear models
incorporating a priori knowledge [1],[3]. In the case of additive
normally distributed noise the statistical inversion problem for-
mulation leads to the well-known Wiener estimation

r̂w = ΣrrW
T (WΣrrW

T + γIk)−1x (2)

where camera sensitivities, illumination and the correlation ma-
trix Σrr of training ensemble are used [6]. The parameter γ ≥ 0
depends on the identically and independently distributed noise
variance in responses.

If we have a priori information of the reflectance spectra and
the corresponding camera responses we can perform the estima-
tion with linear or non-linear regression. In this case explicit
knowledge of the response matrix is not needed. It has been
shown that non-linear regression can lead to increased accuracy
of estimates when the dimension of the subspace of reflectance
is higher than the number of response functions of the observer
(e.g. see [2],[4],[5]).

For non-linear regression we use methods from the theory
of Reproducing Kernel Hilbert Spaces to avoid the explicit for-
mulation of the non-linear mapping [4], [7]. This can be more
practical than the explicit usage of higher order polynomial terms
of response vector x = (x1, . . . ,xk)T as

Φp(x) = (x1,x2, . . . ,xk,x
2
1,x

2
2, . . . ,x

2
k , . . .)

T

that are only practical in lower dimensional response spaces [2],
[5]. In the case of kernels the explicit non-linear feature mapping
Φ : R

k → R
N of the possibly high-dimensional response vector x

is avoided by using a chosen kernel function κ . Dimension N of
the feature space depends on the kernel and can be infinite. Esti-
mate of reflectance corresponding to x is formulated in this study
using linear functions in the feature space. The function κ de-
fines an inner product in the feature space κ(x,z) = 〈Φ(x),Φ(z)〉
[7]. If Kernel Ridge Regression algorithm is used separately for
all the n spectral samples, the estimate computed from x is a lin-
ear combination of all training spectra [4]. These separate scalar
valued regression problems correspond to minimization problem
for matrix F ∈ R

n×N :

argmin
F

(
l

∑
i
‖ri −FΦ(xi)‖2

2 + γ‖F‖2

)

, (3)

where l is the size of training set and parameter γ ≥ 0 allows
to trade-off between the norm of the solution and the datafitting
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accuracy. Using kernel function κ(x,xi) = 〈Φ(x),Φ(xi)〉, the
feature space is used only implicitly and estimate corresponding
to response x becomes

r̂ = RT (K + γI)−1κx. (4)

where Kjm = κ(x j,xm), κx = (κ(x,x1), . . . ,κ(x,xl))T and R ∈
R

l×n is matrix of training spectra [4].
The solution of the regression problem (4) can be seen to

be related also to the inverse problem solution (2). The Wiener
estimate (2) with γ > 0 can be written in the form

r̂w = ΣrrW
T (WΣrrW

T + γIk)−1x

= RT RW T (W RT RW T + γIk)−1x

= RT (RW TW RT + γIl)−1RW T x

= RT (K + γIl)−1κx
w, (5)

where the third equality can be obtained using SVD (Singular
Value Decomposition [8]) of the matrix RWT . The linear kernel
is now defined in spectral space and we have for the elements of
matrix K:

Kjm = κw(r j,rm) = 〈W r j,Wrm〉 = rT
j W TW rm

and

κx
w = ((Wr1)T x, . . . ,(W rl)T x)T .

The kernel κw can be replaced by non-linear versions leading to
applications of a higher dimensional feature space. Some exam-
ples of reproducing kernels are: polynomial kernels of different
degrees, splines, Gaussian, etc. [7]. For this study we chose the
Gaussian kernel with

Kjm = κg(r j,rm) = exp

(

−‖W r j −W rm‖2
2

2σ2

)

,

and

(κx
g ) j = exp

(

−‖W r j −x‖2
2

2σ2

)

,

where σ2 > 0 is a free parameter that enables us to control the
model.

In our approach we use also a non-linear coordinate trans-
formation to include the a priori knowledge that results are re-
flectance spectra with function values between zero and one. We
use the following non-linear transformation for reflectance spec-
tra

r̃ = arctanh(2r−1), (6)

where arctanh : [−1,1] → R is used pointwise. Restoration from
non-linear features is then given by

r = (1+ tanh(r̂))/2. (7)

In this way the reflectance estimates are constrained in the region
[0,1], because tanh : R → [−1,1]. Actual response is the result of
a linear process, if we assume that the system (1) is free of non-
linearities. The application of the transformation (6) introduces
however a non-linearity into the whole estimation process. The
atanh-transformation can be used for Gaussian kernel as

r̂ = R̃T (K + γIl)−1κx, (8)

and for Wiener estimation as

r̂ = R̃T RW T (WΣrrW
T + γIk)−1x, (9)

where R̃ denotes atanh-transformed training spectra as rows.
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Figure 1. Fluorescent and tungsten illuminations.
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Figure 2. Sensitivities under fluorescent and tungsten illuminations.

Experiments
We chose to use the Munsell Book of Color - Matte Fin-

ish Collection (1269 samples) and Pantone (922 samples) as data
sets in experiments. We validate our results on two different test
cases. In the first case responses correspond to camera responses
simulated under two different illumination conditions: Philips
DeLuxe90 TLD 18W/965 6300K lamp and tungsten 100W lamp
sources (Figure 1). Estimation with multiple illuminations has
been also performed using led-illuminations [3]. All spectral
distributions were sampled from 400 nm to 700 nm with 10 nm
steps. Normal distributed noise was added to test responses cor-
responding to 43 dB SNR. The Wiener method (2)without atanh-
transformation or noise (SNR =∞) in the test responses was used
as a reference method in this study. This provides an upper bound
for the performance of the linear Wiener system under ideal sim-
ulated conditions and corresponds to an estimate (2) with γ = 0.

We use the estimated spectral sensitivities of a digital con-
sumer camera [6]. The spectral sensitivities under two illumi-
nations are depicted in Figure 2. Test responses and the known
response functions {wi}k

i=1 were scaled with a diagonal matrix
S, where

Sii =
1

‖wi‖ , i = 1, . . . ,k.

The kernel is given by

κg(rj,rm) = exp

(
− 1

2σ2 ‖SW rj −SW rm‖2
2

)
.

In the second setting we used actually measured RGB re-
sponses using the same tungsten and fluorescent illumination
sources. The objects measured were the chips from the Munsell
Book of Color - Matte Finish Collection. We captured JPEG im-
ages of the Munsell chips with a Fujifilm Finepix S1 Pro digital
camera. We used a Nikon AF Nikkor 25-50 mm zoom lens. The
spectral sensitivities of this camera are different from the ones
used in the simulated case and unknown. Also the non-linearities
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of the camera are not known. Only response values from the re-
gions [5,250] were used in the experiments. The kernel for mea-
sured setting is defined in terms of noisy training responses

κg(xj,xm) = exp

(
− 1

2γ2 ‖Sxj −Sxm‖2
2

)
,

where Sii = 1/255. We compare the proposed non-linear regres-
sion method to the linear least squares regression. Linear pseu-
doinverse estimation is formally written as

r̂ = RT X(XT X)−1x, (10)

where X ∈ R
l×k denotes matrix of response values from training

set.
All results are evaluated using RMSE-error

RMSE = (‖r− r̂‖2/n)
1
2 , (11)

where ‖ · ‖ denotes the Euclidean norm and n is the length of the
vectors r and r̂ corresponding to original and estimated spectrum.
We use the following abbreviations in tables: Avg. = average
error of the test set, Std. = standard deviation of the error, Max.
= maximum error in the test set. The case where noise is present
in the response values is denoted as (n) and when we use the
atanh-transformation we write (t). The results for estimations
are compared against PCA approximations of different ranks for
the test set which are presented in Table 1.

In every case the free parameters σ and γ of the estimation
model (8) with the Gaussian kernel were searched using an N-
fold cross validation routine for the training set [8]. In N-fold
cross validation, the training set is first separated into N equal-
sized parts. The model is then trained using N − 1 parts and
tested with remaining portion. This procedure is repeated for all
the N parts separately. We chose N = 10. Using certain param-
eter values, the average value of the chosen error value is calcu-
lated from all ten test set separations. When this method is used,
also the response values corresponding to the training spectra are
required. Parameter sets for the Gaussian kernel where chosen
using intervals σ ∈ [0.5,4] and γ ∈ [10−3,10−2]. The parameter
values corresponding to the minimum of average RMSE-error
from cross-validation was chosen.

In the first case for the simulated setting, the training and
test set separation was done using the two subsets: Munsell I
(669 samples) & Munsell II (600 samples). The estimation re-
sults obtained for the simulated case for the Munsell I / Munsell
II case are collected in Table 2. These results are averaged over
10 random partitions of the Munsell set into training (669 sam-
ples) and (separate) test sets (600 samples). It can be seen that
without noise, without atanh-transformation and using only one
illumination, the accuracy of the Gaussian kernel is comparable
to 4-dimensional PCA approximation in terms of average RMSE.
Error values are halved compared to the ideal Wiener estimate.
Tungsten illumination leads to better performance than fluores-
cent illumination. When the noise and the atanh-transformation
are used the error values increase but are still significantly lower
compared to the ideal Wiener estimate. When both illumina-
tions are used, the performance of the ideal Gaussian model
shows again an improvement over the ideal Wiener result. When
the noise and atanh-transformation are introduced for the Gaus-
sian kernel, the performance of the model and the ideal Wiener
model are equal. The Wiener model combined with the atanh-
transformation lead to poor results for every illumination condi-
tion.
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Figure 3. An example of an estimate for a Munsell spectrum using Wiener

and Gaussian kernel estimations. Training set: Munsell I, Illumination: Tung-

sten.
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Figure 4. An example of an estimate for a Munsell spectrum using Wiener

and Gaussian kernel estimations. Training set: Pantone, Illumination: Tung-

sten & fluorescent.

In second case for simulated setting the Pantone (922 sam-
ples) and the Munsell (1269 samples) were used as a training and
test sets, respectively. The results for the Pantone / Munsell set-
ting in Table 3 show significantly decreased performance from
previous setting for both estimation models. Using one illumi-
nation, and the Gaussian kernel, model again improves from the
ideal Wiener estimate in terms of average RMSE. Maximal er-
ror values are lower for the ideal Wiener estimate. The Gaus-
sian model with atanh-transformation and noise gives similar
performance as the ideal estimation. When both illuminations
are used the ideal Wiener estimate leads to an improved perfor-
mance over Gaussian model. The method used for the estimation
of parameters has overfitted the training population and doesn’t
generalize well. If the intervals for the parameters were chosen
to include even smaller values, the overfitting effect might be
stronger. When the σ parameter is chosen to be larger, the per-
formance of the Gaussian model approaches to the ideal Wiener
model. In this sense the routine for searching the model param-
eters doesn’t seem to be appropriate when the training and test
populations are not similar. Again, the Wiener model combined
with the atanh-transformation decreases the performance signifi-
cantly from ideal model.

The estimation results obtained for the measured responses
using regression estimations are collected in Table 4. These re-
sults are averaged over 10 random partitions of the Munsell set
into training (669 samples) and (separate) test sets (495 samples).
It can be seen that in this measured setting the linear pseudoin-
verse method without any constraints lead to poor estimations.
This is probably due to the non-linearities in the system. When
the atah-transformation is used for the linear pseudoinverse, the
estimation performance increases significantly. This is opposite
effect when compared to simulated setting where the system was
free of non-linearities. For the Gaussian kernel the results are
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Figure 5. An example of an estimate for a Munsell spectrum using Gaus-

sian kernel with and without the atanh-transformation. Training set: Pan-

tone, Illumination: Tungsten & fluorescent.

similar with or without the atanh-transformation. Performance of
the kernel improves from the 3-dimensional PCA-approximation
and significantly improves from the pseudoinverse estimation.

Table 1. RMSE errors for Munsell sets using different PCA
approximations. Results are average of ten randomizations
of 600 samples.

Rank Avg. Std. Max.
k = 3 0.0190 0.0139 0.1066
k = 4 0.0129 0.0097 0.0702
k = 5 0.0092 0.0056 0.0453
k = 6 0.0075 0.0042 0.0281
k = 7 0.0055 0.0033 0.0285
k = 8 0.0045 0.0025 0.0169

Table 2. Average RMSE errors for the simulation setting Mun-
sell I/Munsell II (Average of 10 randomizations for noise and
sets). Illumination sources: Fluorescent and/or Tungsten.

Method Avg. Std. Max.
Fluorescent

Ideal Wiener 0.0230 0.0186 0.1534
Ideal Wiener (t) 0.0392 0.0198 0.1745
Ideal kernel κg, 0.0119 0.0097 0.0745
Kernel κg (n, t) 0.0124 0.0103 0.0849

Tungsten
Ideal Wiener 0.0211 0.0154 0.1063
Ideal Wiener (t) 0.0378 0.0157 0.1171
Ideal kernel κg, 0.0103 0.0084 0.0653
Kernel κg (n, t) 0.0111 0.0087 0.0715
Fluorescent & Tungsten

Ideal Wiener 0.0090 0.0052 0.0422
Ideal Wiener (t) 0.0324 0.0130 0.0828
Ideal kernel κg, 0.0066 0.0048 0.0406
Kernel κg (n, t) 0.0091 0.0048 0.0397

Discussion
In this study we have presented results when linear Wiener

estimation and linear least squares regression models are ex-
tended to non-linear using the Gaussian kernel. We have also
presented physically motivated constraint of reflectance estimate
to [0,1] using non-linear transformation in spectral space. Ex-
perimental results have been derived for a digital RGB camera
using tungsten and fluorescent illuminations. The methods can
also be used with general color scanner and also for arbitrary

Table 3. Average RMSE errors for the simulation setting Pan-
tone/Munsell (Average of 10 randomizations for noise and
sets). Illumination sources: Fluorescent and/or Tungsten.

Method Avg. Std. Max.
Fluorescent

Ideal Wiener 0.0357 0.0172 0.1487
Ideal Wiener (t) 0.0438 0.0175 0.1557
Ideal kernel κg, 0.0326 0.0209 0.1721
Kernel κg (n, t) 0.0333 0.0217 0.1759

Tungsten
Ideal Wiener 0.0301 0.0145 0.1158
Ideal Wiener (t) 0.0396 0.0132 0.1088
Ideal kernel κg, 0.0273 0.0165 0.1186
Kernel κg (n, t) 0.0278 0.0167 0.1277
Fluorescent & Tungsten

Ideal Wiener 0.0133 0.0090 0.0503
Ideal Wiener (t) 0.0299 0.0085 0.0614
Ideal kernel κg, 0.0184 0.0101 0.0692
Kernel κg (n, t) 0.0208 0.0099 0.0759

Table 4. Average RMSE errors for measured setting Munsell
I/Munsell II setting (Average of 10 randomizations for sets).
Illumination sources: Fluorescent and/or Tungsten.

Method Avg. Std. Max.
Fluorescent

Lin. pseudoinverse (n) 0.0554 0.0240 0.1669
Lin. pseudoinverse (n, t) 0.0263 0.0186 0.1154
Kernel κg (n) 0.0163 0.0115 0.0827
Kernel κg (n, t) 0.0161 0.0117 0.0854

Tungsten
Lin. pseudoinverse, (n) 0.0547 0.0228 0.1629
Lin. pseudoinverse (n, t) 0.0270 0.0176 0.1145
Kernel κg (n) 0.0159 0.0108 0.0784
Kernel κg (n, t) 0.0163 0.0118 0.0837

Fluorescent & Tungsten
Lin. pseudoinverse, (n) 0.0503 0.0242 0.1644
Lin. pseudoinverse (n, t) 0.0226 0.0160 0.1091
Kernel κg (n) 0.0140 0.0103 0.0768
Kernel κg (n, t) 0.0136 0.0102 0.0795

color transformations. It was found that the cross-validation rou-
tine for searching the model parameters wasn’t appropriate when
the training and test populations were different. Parameter val-
ues have to be constrained in order to avoid overfitting to training
set. When multiple illuminations are used, the ideal Wiener es-
timation seem to provide accurate estimation for the chosen sets
and sampling interval. It should be noted that efficient use of the
Wiener method also requires the estimation of noise variance in
real conditions. For linear models the atanh-transformation lead-
ing to physically feasible estimation cannot be used in general. In
this study, use of the atanh-transformation improved the results
for real measurements because of non-linearities in the camera
system.
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