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Abstract 
The problem of colour constancy is ill-posed.  In order to 

extract surface reflectance accurately from the received colour 
signal, the visual system must rely on pre-imposed constraints 
based on properties of the natural world. Here we investigate 
the surface chromaticity distributions of 7 natural objects under 
3 illuminations (D65, CWF and F), using a characterized Nikon 
D70 SLR camera. We find that these object surfaces exhibit 
intrinsic chromatic textures and provide a large number of 
reflectance samples on their own. The information may thereby 
be utilized to improve colour constancy over that achievable 
with  artificial surfaces possessing single or limited 
chromaticities. By analyzing the pattern of the chromaticity 
distributions under changing illumination, we find that the 
distributions of within-surface cone contrasts for  given objects 
form distinct signatures in cone-contrast space.  These 
signatures transform predictably under changes in 
illumination. We suggest that this feature may be utilized to aid 
colour constancy. 

Introduction  
The problem of colour constancy is ill-posed, because 

object surface reflectance and illuminant spectral power 
distribution are not uniquely separable [1,2]. In order to extract 
surface reflectance accurately from the received colour signal, 
the visual system must rely on pre-imposed constraints based 
on properties of the natural world [3].  

Empirical studies of colour constancy typically employ 
‘Mondrian’ patterns with a limited number of uniform colour 
patches. These stimuli are not representative of natural 
surfaces, which often possess intrinsic chromatic and luminance 
texture [4]. For example, a banana is neither uniformly 
coloured nor uniformly bright, whether it is ripe yellow or 
unripe green. Thus, colorimetrically, the banana’s surface may 
be highly heterogenous, with substantial variation in its 
chromaticity and luminance at different spatial locations, even 
though we might perceive its surface as largely uniform.  

Computational models of colour constancy demonstrate 
that the estimation of the illuminant spectral power distribution 
improves as the number of distinct surface reflectance samples 
increases [5]. Therefore, a single natural surface with intrinsic 
chromatic texture may provide a large number of reflectance 
samples on its own, and thereby undergo improved colour 
constancy relative to a surface with a single chromaticity.     

To test the hypothesis above, we developed a method to 
record accurately and analyse the chromaticity distributions of 
natural objects, under various illuminations. We found that the 
distribution of within-surface cone contrasts for a given object 
forms distinct signatures in three-dimensional cone-contrast 
space.  These signatures transform predictably under changes in 
illumination, and this behaviour may be utilized to aid colour 
constancy. 

Methods 
We employed a Verivide Colour Assessment cabinet, 

containing 3 independent, stable illumination sources (D65, 
CWF and F), and a Nikon D70 SLR camera with a 18-70mm 
kit lens, characterised to capture the chromaticity values of 
objects under each illumination. The characterisation process 
had two aims: (1) to obtain a set of RGB values measured by 
the camera and their corresponding XYZ values as measured by 
a spectroradiometer, under each illumination, and (2) to 
construct a characterisation model which summarised the 
relationship between the two sets of values. The details of the 
characterisation process are given below.  

Before the measurements, we optimised the camera’s 
settings under each illumination by placing a Macbeth Digital 
ColorCheck SG within the viewing cabinet, and adjusting the 
settings of the camera to optimise the histograms of the images. 
In practice, only the white balance and shutter speed settings 
required changing for each illumination (as shown in Table 1); 
all other settings were kept constant.   

Table 1. The white balance and shutter speed settings under 
all illuminations. 

 D65 CWF F 
 

White balance Cloudy Cloudy Incandescent+3 

Shutter Speed 1/13 1/6 1/6 

We measured 125 colour patches in total, 124 from the 
Munsell colour book and one black patch from the Macbeth 
Digital Color Check SG because it approximates a pure black 
better than the darkest colour in the Munsell colour book. Of 
these, 88 patches were used as the training data set for 
obtaining the characterisation model, and the remaining 37 
patches as the testing data set to test the model’s performance. 
Each set individually spanned the full Munsell hue circle at 
varying values and lightnesses. Their descriptions are given in 
Table 2. 

Each colour patch was then positioned at the same location 
within the viewing cabinet, and a PR 650 spectroradiometer 
measured its surface reflectances, while the camera recorded its 
RGB values from the same location. The patches’ surface 
reflectances were measured only under D65; we then measured 
the spectral power distributions of the 3 test illuminations to 
compute the patches’ XYZ values under all 3 illuminations. 
The process was repeated until all the colour samples’ RGB and 
XYZ values were recorded under all 3 illuminations. 

We then developed an individual characterisation model 
for each illumination, using a fifth order polynomial regression 
model. Under each illumination, we obtained a 3x35 
polynomial regression fit which transforms the RGB values into 
XYZ values for the 88-sample training data set [6]. We then 
assessed the performance of the regression model by computing 
the colour difference between the measured XYZ values and 
the model-predicted XYZ values, for both the training and 
testing data sets.   
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Table 3 illustrates the model’s performance under all 3 
illuminations. For the training data sets under 3 illuminations, 
the mean colour differences between the model-predicted XYZ 
and the measured XYZ are below 1.5 •E

uv
 units, just slightly 

above one JND (just noticeable difference). For the testing data 
sets, the mean colour differences between the model-predicted 
and measured colours are all below 2.5 •E

uv
 units. Note that the 

polynomial regression weights were obtained only from the 
training data sets. The good performances we obtain for the 
testing data sets therefore indicate that the characterisation 
model predicts well the XYZ value for any RGB input,  
whether or not it was included in fitting the model. We 
therefore conclude that the characterisation models will 
adequately predict chromaticity values for RGB values in any 
image, under the 3 test illuminations.  

Table 2. Munsell notations for the training and testing data 
sets.  

88 training data set 

5R: 3/2, 3/6, 5/2, 5/6, 5/10, 5/14, 7/2, 7/6, 7/10 
5YR: 3/2, 5/2, 5/6, 7/4, 7/8, 7/12, 8/8 
5Y: 3/2, 5/2, 5/6, 7/4, 7/8, 7/12, 8.5/4, 8.5/8, 8.5/12, 9/8 
5GY: 3/2, 5/4, 5/8, 7/4, 7/8, 8.5/2, 8.5/6, 8.5/10 
5G: 3/2, 5/4, 5/8, 7/2, 7/6, 7/10, 8/6 
5BG: 3/2, 5/4, 5/8, 7/4, 7/8, 8/4 
5B: 3/2, 3/6, 5/4, 5/8, 7/4, 7/8, 8/4 
5PB: 3/4, 3/8, 5/4, 5/8, 5/12, 7/4, 7/8, 8/6 
5P: 3/4, 3/8, 5/2, 5/6, 5/10, 7/4, 7/8, 8/4 
5RP: 3/2, 3/6, 5/4, 5/8, 5/12, 7/4, 7/8, 8/6 
N: 2, 3, 4, 5, 6, 7, 8, 9, 9.5 and Color checker black 
37 testing data set 

10R: 2.5/2, 5/8, 8/6; 10YR: 3/2, 6/8, 8/10;  
10Y: 4/2, 7/4, 8.5/10; 10GY: 5/6, 8/6, 9/4 
10G: 4/8, 6/4, 9/2; 10BG: 3/4, 6/6, 8/2 
10B: 3/6, 6/10, 9/2; 10PB: 2.5/6, 4/6, 7/8 
10P: 3/4, 5/10, 7/6; 10RP: 5/8, 7/4, 9/2 
N: 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5 

Table 3. The model’s performance for both training and 
testing data sets under all 3 illuminations, reported as the 
mean and standard deviation of all CIE ∆Euv values between 
model-predicted and measured CIE XYZ coordinates. 

 Training data set Testing data set 

∆Euv Mean Std dev Mean Std dev 

D65 1.4888 0.8172 2.2760 0.8560 

F 1.1602 0.7742 2.4669 1.5986 

CWF 1.1017 0.6240 1.8723 2.1107 

 
To measure the chromaticity distributions of natural 

objects under changing illumination, we selected 7 fruits and 
vegetables: banana, carrot, apple, clementine, plum, strawberry 
and cucumber, all common objects in daily life, each 
possessing a distinct surface colour and texture. Each object 
was placed in the viewing cabinet, at the same location where 
the training and testing colour samples were measured. The 
Nikon D70 camera then captured an image of the object for 
each of the three test illuminations, under each corresponding 
setup (as shown in Table 1). We therefore obtained 21 object 

images in total. By isolating all coloured pixels within the 
object’s contour, and computing their chromaticities using the 
camera characterization model, we obtained the chromaticity 
distributions of all 7 objects under 3 illuminations.  

Results 
Figure 1 demonstrates the chromaticity distributions of 

one object: a clementine, under 3 illuminations, illustrated in 
the CIE x, y chromaticity plane. (The luminance distribution 
(Y) of the object is excluded from this analysis, as the major 
sources of luminance variations for these objects are extrinsic, 
i.e. due to 3D shading and illumination geometry, rather than 
intrinsic, i.e. due to surface properties.) To exclude surface 
chromaticities which appear only very sporadically, and to 
improve the speed of the computation, only those surface 
chromaticities which occur at least 5 times within the object’s 
surface are presented in Figure 1 and are analysed further in the 
following sessions. (Note that these are incidence distributions, 
in that each value is represented equally provided it has 
occurred at least 5 times.)  

Figure 1 illustrates that a clementine possesses a large 
number of distinct surface chromaticities. Moreover, the 
chromaticity distributions of clementine vary substantially 
under changing illumination - not only do they reside in 
different areas of the chromatic diagram under different 
illuminations (see D65 vs. CWF in Figure 1), they also form 
clusters with distinct features (the shape of clusters under 
illuminant F is notably different from the shape of clusters 
under D65 and CWF). The same conclusions can be drawn for 
all the other objects, although only the results for the 
clementine are shown.  

The finding that surface chromaticity distributions vary 
under changing illumination is not surprising. The chromaticity 
of a surface is affected by both the surface’s reflectance and the 
spectral composition of the illumination. We would thus expect 
that the chromaticities of the same object change while the 
illumination alters. In fact, the fundamental challenge of colour 
constancy is to establish how we do maintain a relative stable 
perception of an object under changing illumination.. 

In this paper, we attempt to examine the distribution of an 
object’s surface chromaticities as a whole, and investigate 
whether the distribution itself exhibits any constant 
characteristic which may be used to aid colour constancy. To 
achieve this goal, we first transform the original chromaticity 
distributions into cone contrast space [7], to simulate the early 
stage adaptation and encoding undergone by the visual system. 
Here we assume that the visual system is adapted to the grey 
background around the object (see red solid dots in Figure 1). 
(In this space, the RG cone contrast is calculated as the contrast 
in the (L-M) excitation with respect to the background (L-M) 
excitation, where L denotes the long-wavelength-sensitive cone 
type and M the middle-wavelength-sensitive type. BY cone 
contrast is the S-(L+M) contrast, where S denotes the short-
wavelength-sensitive cone type.)   

 Figure 2 illustrates the RG and BY cone contrast 
distributions of a clementine under 3 test illuminations. Visual 
inspection of Figure 2 suggests that the cone contrast 
distributions of the object under changing illumination are more 
constant than the chromaticity distributions in Figure 1. The 
banana’s RG and BY cone contrast distributions form a distinct 
pattern in cone contrast space, for which not only the size, but 
also the shape and position remain relatively constant, even 
though the illumination has changed.  
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Figure 1. CIE xy chromaticity distributions of a clementine under 3 test illuminations. The coloured circles approximate the RGB colours in the original 
digital image.The red solid dots indicate the chromaticity of the background surface. Top left: original clementine image under D65; top right: the 
chromaticity distribution of clementine under D65 illumination; bottom left: the chromaticity distribution of clementine under CW illumination F; bottom right: 
the chromaticity of clementine under F illumination.  

 

Figure 2. The RG and BY cone contrast distributions of a clementine under 3 test illuminations. The coloured circles illustrate the RGB colours in the 
original digital image.The black solid lines indicate the fitted main hue angles;  the red solid lines indicate the fitted major distribution axes. Top left: original 
clementine image under CWF; top right: the cone contrast distribution of clementine under D65 illumination; bottom left: the cone contrast distribution of 
clementine under CWF illumination; bottom right: the cone contrast distribution of clementine under F illumination. 
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Figure 3. The major distribution axis angles and hue angles for all 7 objects, under 3 test illuminations.  

We thus attempt to extract a simple numeric signature – a 
quantitative representation of the basic features of the 
distributions. We note that for almost all 21 images, the objects’ 
cone contrast distributions form simple narrow shapes which 
are well represented by vectors describing the major and minor 
axes of the shape. In addition, the mean cone contrast of each 
distribution remains roughly constant. We therefore test two 
candidates for signatures, each with its own perceptual 
implication. 

The first signature we test is the angle of the major axis of 
the distribution in cone contrast space, which characterises the 
primary direction of the cone contrast distribution. This 
signature is obtained by finding the best fits for p1 and p2 in a  
first order linear model, as shown in Equation 1:  

BY = p1*RG+p2                                                (1)                                             
where RG represents the RG contrasts of the distribution, and 
BY the BY contrasts of the distribution. The signature is then 
computed as the arctangent of p1, where p1 and p2 are the best 
fits to Equation 1 for a surface distribution.  

The second signature is the mean hue angle of the 
distribution, which represents the mean vector of the 
distribution with respect to the neutral point ([0, 0] in cone 
contrast space). This signature corresponds roughly to the 
definition of hue, and may correlate better with the perceptual 
hue observed for the object. The signature is obtained by taking 
the arctangent of the best-fitting p1 for Equation 2: 

BY=p1*RG                                                        (2) 
The solid red lines in Figure 2 demonstrate the fitted 

signature 1 (the distribution major axis angle) for the 
clementine, under 3 illuminations. The solid black lines in 
Figure 2 show the fitted signature 2 (the hue angles) for the 
clementine, under all illuminations. Although the red and black 
lines in Figure 2 are similar, they do not overlap completely, 
indicating the difference between measures. Nevertheless, 
across illuminations, the directions of the fitted vectors do not 
vary much, for both signatures.  

Figure 3 illustrates the measured distribution axis and hue 
angles for all objects, under 3 illuminations. Despite changes in 

illumination, both signatures remain relatively constant, and are 
not significantly affected by illumination (Two way ANOVA 
analysis: distribution axis angles: F(2, 20)=1.9, p=0.1912; hue 
angles: F(2,20)=3.49, p=0.07). We therefore hypothesize that 
these constant signatures may be utilized by our visual system 
to aid colour constancy.  

Discussion 
Empirical studies of colour constancy typically employ 

simple colour stimuli which contain limited numbers of 
chromaticities. In this paper, we have shown that in the natural 
world, even simple objects such as fruit or vegetables possess  
capacious amounts of surface information. Therefore, the visual 
system is consistently processing complex chromaticity 
distributions, rather than individual surface chromaticities. The 
theoretical implications of this characteristic of natural surfaces 
has largely been overlooked by previous studies, but it may 
play an important role in colour constancy.  

In this paper, we consider the chromaticity incidence 
distribution of a natural object as a whole, and investigate how 
the distribution changes under varying illumination. We find 
that the cone contrast distribution of an object remains nearly 
constant under changing illumination. This finding prompts us 
to extract simple numeric signatures to represent the 
fundamental characteristics of a complex distribution, and 
discuss the possibility that these signatures may play a role in 
colour constancy. 

This paper is a preliminary study to propose a feasible 
candidate for colour constancy. We do not intend here to verify 
the proposed signatures, or to examine when or how are they 
employed by the visual system. Nevertheless, given that we 
often perceive familiar objects as largely uniform in colour, and 
assign unitary “memory colours” to them [8], it is likely that the 
visual system employs some kind of algorithm to extract simple 
representations from complex chromatic distributions.   

Whichever algorithm the visual system might use, its 
purpose should be the same, that is, to extract constant 
descriptors from variable signals. Yet the method is likely to be 
much more complex than the simple signatures we propose 
here. For example, to simplify computations here, we have 
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disregarded several types of information, such as the luminance 
incidence distribution, the spatial patterns of chromaticity and 
luminance, and the chromaticity and luminance frequency 
distributions. We have also excluded from consideration those 
features which would differentiate objects from one another 
under a single illumination (e.g. the length of the major axis, or 
the major/minor axis ratios). The contributions of these 
additional sources of information to colour constancy is beyond 
the scope of the current paper, and will be of interest for future 
studies.  
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