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Abstract  
 A new illumination-estimation method is proposed based 

on the dichromatic reflection model combined with Hough 
transform processing.  Other researchers have shown that 
using the dichromatic reflection model under the assumption of 
neutral interface reflection, the color of the illuminating light 
can be estimated by intersecting the dichromatic planes created 
by two or more differently coloured regions. Our proposed 
method employs two Hough transforms in sequence in RGB 
space. The first Hough Transform creates a dichromatic plane 
histogram representing the number of pixels belonging to 
dichromatic planes created by differently coloured scene 
regions. The second Hough Transform creates an illumination 
axis histogram representing the total number of pixels 
satisfying the dichromatic model for each posited illumination 
axis. This method overcomes limitations of previous 
approaches that include requirements such as: that the number 
of distinct surfaces be known in advance, that the image be pre-
segmented into regions of uniform colour, and that the image 
contain distinct specularities. Many of these methods rely on 
the assumption that there are sufficiently large, connected 
regions of a single, highly specular material in the scene. 
Comparing the performance of the proposed approach with 
previous non-training methods on a set of real images, the 
proposed method yields better results while requiring no prior 
knowledge of the image content.  

Introduction 
In this paper, we will focus our attention on the problem of 

estimating the color of the light by exploiting the principles of 
color image formation laid down by the dichromatic reflection 
model [1].   It states that, in RGB space, the colors reflected by 
an inhomogeneous dielectric material lie on a plane that is 
spanned by two characteristic colors; namely, the color of the 
specular component reflected from the air-surface interface, and 
the color reflected from the body of the material. If neutral 
interface reflection is assumed [2], then the chromaticity of the 
specular reflection is the same as that of the illuminating light. 
As a result, the color of the illuminant can be estimated by 
intersecting the planes that the set of RGBs from two or more 
different materials describe.  

 Based on the dichromatic reflection model [1], Lee [3] 
introduced a method for computing the scene illuminant 
chromaticity by intersecting lines in chromaticity space. 
Although Lee’s method performs sufficiently well on synthetic 
images of spheres, its application to real-world scenes is 
sensitive to noise and inhomogeneities such as textured 
surfaces.  Another approach using dichromatic regions of 
different colored surfaces, is called color line search [4]. It 
involves automatic detection of specular regions, a Hough 
transform step, and consistency check step. However, this 
approach requires correct detection of regions of interest, and 
can fail when specular highlights are incorrectly identified or 
absent from the scene. The method proposed by Tan et. al.[5] 
describes an inverse-intensity chromaticity space in which the 

correlation between illumination chromaticity and image 
chromaticity can be analyzed. Once again, this method relies on 
correctly identifying the highlight regions, and does not 
perform any better than competing methods.  The proposal to 
solve for the intersection of the dichromatic planes directly as 
described by Toro et. al.[6] assumes that in any patch of the 
given image, a fixed number of different materials coexist. The 
illumination colour can be calculated by solving a set of 
simultaneous linear equations using a Veronese projection of 
multilinear constraints. However, this approach assumes that 
the number of different surfaces in an image is already known. 
It also does not yield any better results than previous methods 
when applied to real images. The method proposed by Schaefer 
in [7] achieves competitive results, but the approach requires 
the illumination to be from a set of known light sources. 

In this paper we proposed a robust method for determining 
the illumination axis. The method detects dichromatic planes 
while placing few restrictions on the image content, such as the 
number of surfaces, the surface colours, or the identification of 
specular regions. The approach involves two Hough 
Transforms in sequence that result in a histogram representing 
the likelihood that a candidate intersection line is the image 
illumination axis.  The final illumination estimate is determined 
by intelligently choosing from amongst the most likely 
candidates. 

Dichromatic Reflection Model  
The dichromatic reflection model for inhomogeneous 

dielectric objects states that the colour signal is composed of 
two additive components, one being associated with the 
interface reflection and the other describing the body reflection 
part [1]. This can be expressed as  
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geometry θ, which includes the incident angle of the light, the 
viewing angle, and the phase angle. 

Suppose R, G, and B are the red, green, and blue pixel 
value outputs of a digital camera, then each color vector 
(R,G,B)T is determined by a linear combination of a surface 
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)T  component. Equation 2 shows that the colour signal can 

be expressed as the weighted sum of these two reflectance 
components. Thus the colour signals for an object are restricted 
to a plane. 
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If we consider two objects within the same scene (and 
assume that the illumination is constant across the scene) then 
we end up with two RGB planes. Both planes, however, contain 
the same illuminant RGB. This implies that their intersection 
must be the illuminant itself. Although theoretically sound, 
dichromatic colour constancy algorithms do not always perform 
well on real images. For example, image noise may cause the 
intersection of two dichromatic lines planes to change quite 
drastically. In addition, textured and non-uniform surfaces may 
mean that the distribution of colours does not lie on 
distinguishable dichromatic planes.  

Method 
We use a Hough Transform [8] for dichromatic plane 

detection. In the 3D case, a plane is parameterized as:  
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where ρ is the distance between a plane and the origin, φ  

is angle relative to the z axis, θ is angle relative to the y axis.  
In the discrete case, the parameter space (ρ,φ,θ) is quantized 
into bins, so the Hough Transform is represented as a three-
dimensional histogram. 

According to the dichromatic model, all dichromatic 
planes should pass through the origin. This implies that the 
“distance” ρ in Equation 3 is zero, so the RGBs reflected from 
a dichromatic surface satisfy the following parametric plane 
equation 
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All pixels from the same surface belong to a single plane 

defined by the two angles φ and θ.  Hence a 2D Hough 
Transform can be used to create a dichromatic plane histogram 
H1. Each bin of the histogram represents the number of pixels 
belonging to a distinct dichromatic plane specified by the pair 
of angles (φ,θ) satisfying Equation 4. A high value in the 
histogram implies the existence of this dichromatic plane in the 
image, while a lower value implies its absence. Two examples 
of dichromatic plane histograms are shown in Figure 1(b) and 
(e).  

Since the illumination axis is the intersection of all 
dichromatic planes [6], it must be perpendicular to the normal 
of each dichromatic plane.  Therefore, the axis perpendicular to 
the normals of the largest number of dichromatic planes is a 
good candidate for the illumination axis.  To determine it, we 
use a second Hough Transform to create an illumination 
histogram H2 based on the data from H1. To use the data from 
H1, we first calculate the normals of the dichromatic plane in 
the dichromatic plane set. The normal of a dichromatic plane 
described by (φ,θ) is n = (u,v,w) where 
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When an illumination axis is represented in polar form by 

the two angles α and β,  it is perpendicular to the normal n of a 
dichromatic plane if and only if it satisfies the following 
equation 
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Based on Equation 6, a second 2D Hough Transform 

parameterized by (α, β) is used to create an illumination 
histogram. The count for a bin in the illumination histogram is 
calculated in the following manner. When the normal of 
dichromatic plane  (φ, θ)  is perpendicular to illumination axis 
(α, β), the count from the corresponding bin of H1 is added to 
that of the corresponding bin of H2. The bin count of a bin b in 
the resulting histogram indicates the number of image pixels 
that conform to the dichromatic model under the illumination 
that b represents in that contributing pixels all come from a 
collection of dichromatic planes that share a common 
intersection, and a common intersection represents a shared 
illumination. Therefore, a high bin count implies a high 
probability that the bin corresponds to the true scene 
illumination. Figures 1(c) and (f) provide two examples of  
illumination histograms for the same object under two different 
illuminations.   
       In principle, the correct illumination can be determined by 
searching for the global maximum in the illumination 
histogram. However, due to noise and the non-dichromatic 
properties of some surfaces that may be present in the image, 
the global maximum of the illumination histogram does not 
always correctly correspond to the true scene illumination. 
Although the global maximum may not always indicate the 
correct illumination, generally one of the local maxima will. 
Hence the problem becomes how to select between the local 
maxima. Our strategy is to select the local maximum inside a 
bounding disc centered at the illumination as estimated by 
another illumination-estimation method. In particular, in the 
experiments reported here we use the Shades of Gray (SoG) 
method [9]. The disc radius is based on the average and 
standard deviation of the error of this method.  

In summary, the complete estimation consists of the 
following steps:  
1. Normalize the image I (scale intensities, remove dark 

pixels, etc) 
2. Transform 3D pixels in I into the dichromatic Hough 

space H1 using Equation 5 
3. Transform H1 into illumination Hough Space H2 using 

Equation 6 and 7 
4. Estimate image illumination L by SoG 
5. Find the nearest local maximum in H2 inside a bounding 

disc centered at L 
6. Convert polar coordinate representation of this local 

maximum into chromaticity coordinates 
 
In summary, the two Hough Transforms can be thought of 

as two voting procedures. First, each pixel votes for the 
candidate dichromatic planes that pass through it. Second, each 
dichromatic plane in turn casts a weighted vote (weighted by 
the number of pixels on that plane) for each candidate 
illumination axis that passes through it. Finally, the illumination 
axes that receive the highest votes are considered likely 

candidates for the true illumination. 
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Methods Training 
Required 

Median 
Angular Error 

Grey World  no 7.0 
Max-RGB  no 6.5 
Multilinear Constraint no 5.8 
Shades of Grey (n=6) no 3.7 
Grey Edge  no 3.2 
2nd order Grey Edge  no 2.7 
GSI no 3.5 
Color by Correlation yes 3.2 
Neural Networks yes 7.8 
TPS yes 0.6 
2D SVR yes 4.7 
3D SVR yes 2.2 
3D Hough Transform  no 1.7 

Table 1. Comparison of performance of the proposed method with that of 
other non-training methods ( Grey World, Max RGB, Multilinear 
Constraint, SoG, GSI, Grey Edge, 2nd order Grey Edge) and training 
methods ( Color by Correlation, TPS, SVR 2D and SVR 3D, Neural 
Networks) measured in terms of median angular errors based on the SFU  
image dataset of 321 images. The entries for GW, Max RGB, SoG, GE, 
2nd GE, CbyC, and NN are reproduced from Table II, page 2211 of  [13]. 

Experimental Results 
The proposed method was tested on the Simon Fraser 

University colour image database [10], which contains 321 
images of 32 scenes under 11 different illuminants. In our 
experiments, an image is resized to 200x200 and normalized 
such that the range of intensity in any image is [0, 255], and 
then the first Hough transform is applied to all pixels 
(excluding pixels over 250 or under 10). The space of planes is 
defined by angles (φ,θ), whose values are integers in [0 to 179]. 
The result of the first Hough transform, H1, is therefore a 
180x180 2D histogram as shown in Figure 1b and 2e. The 

illumination axis space is defined by angles α and β with 
integer values in [0, 89].  Hence, the illumination histogram H2 
calculated by a Hough transform of H1 is a 90x90 2D histogram 
(Figure 1c and 1f).  

 The performance is evaluated in terms of the angular 
difference in degrees between the RGB of the estimated and 
actual illumination.  In Table 1, our approach shows good  
performance when compared to competing illumination-
estimation methods [6,11-16].   

Conclusion 
We have presented an illumination-estimation method that 

uses the constraints provided by the dichromatic model in a 
new and quite robust way.  The method is based on  two Hough 
transform voting procedures. First, each image pixel votes for 
every dichromatic plane it could fall on. This results in a 2D 
histogram representing the likelihood of each plane. Second, 
each dichromatic plane votes for each candidate illumination 
axis that could pass through that plane. Finally, an illumination 
axis is chosen from among those receiving the highest number 
of votes based on the resulting illumination being close to that 
of the SoG illumination estimate.  

In general, the total complexity of our method is 
O(NM+MK), where N is the number of pixels in an image; M is 
the cardinality of the candidate dichromatic plane set; K is the 
cardinality of the candidate illumination axis set. In our 
experiment, the dichromatic planes and illumination axes were 
searched exhaustively with M = 180x180 and K = 90x90.  

In conclusion, we proposed a robust method that creates a 
2D illumination axis histogram that represents the likelihood of 
the possible illuminations. Our approach makes no assumption 
about the number of surfaces or the surface colours, yet 
performs well in comparison to the other methods tested. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Two images of the same object under different illuminants. (a) and (b) are the original images; (b) and (c) are the dichromatic plane histograms of 
the images in (a) and (b) respectively, after the first Hough Transform, with φ and θ ranging from 0 to 179; (c) and (d) are the illumination histograms of the 
images in (a) and (b) respectively, after the second Hough Transform, with α and β range from 0 to 89. The arrows in the two figures indicate the locations 
of the true illuminants. The correspondence between the true illumination and the histogram peaks is evident. 
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