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Abstract
The goal of color constancy is to measure image colors de-

spite differences in the color of the light source. Traditionally, the
computational method of obtaining this ability is by using pixel
values only. Recently, methods using edges instead of pixel val-
ues have been proposed. However, different edge types exist, such
as material, shadow and specular edges. Therefore, in this paper,
the main goal is to analyze the influence of different edge types
on the performance of edge-based color constancy. It is shown
that, on generated data without color clipping, specular edges
deliver near-perfect color constancy and that shadow edges are
more valuable than material edges. However, with color clip-
ping, the performance using the specular edges decreases sig-
nificantly, while the performance using the material or shadow
edges is less affected.

Introduction
Differences in illumination cause measurements of object

colors to be biased towards the color of the light source. Color
constancy is the ability to maintain invariance with respect to
these differences. The ability of color constancy facilitates many
computer vision related tasks like color feature extraction [10]
and color appearance models [7].

Even though many algorithms for illuminant estimation
have been proposed, see [13] for an overview, most of these
methods use the pixel values. Examples of such methods in-
clude approaches based on low-level features [5, 15] and gamut-
based algorithms [9]. Only recently, attempts to use transitions
(i.e. edges) or even higher-order statistics have been proposed
[6, 12, 17].

Edges can be categorized into several types like shadow,
specular and material edges [11, 16]. The contribution of this
paper is to analyze which edge types contain the most valuable
information for estimation of the illuminant. It is known that
highlights contain important information [1, 3]. However, in
real-world images, pixels with high intensity are often clipped
some certain maximum value (like 255), causing the information
about the illuminant to be less reliable.

Using zeroth-order statistics, it was shown that a varying il-
lumination can aid the estimation of the illuminant, if surfaces are
accurately identified under different light sources [2, 8]. In this
paper, the goal is to analyze the performance of color constancy
methods using first-order statistics (i.e. edges), with respect to
the type of edges that occur in images. For this purpose, edge
data is generated under controlled circumstances, and the perfor-
mance of edge-based color constancy is measured for different
edge types.

Color Constancy
The image values f for a Lambertian surface depend on the

color of the light source e(λ ), the surface reflectance s(x,λ ) and
the camera sensitivity function c(λ ):

f(x) =
∫

ω
e(λ )c(λ )s(x,λ )dλ , (1)

where ω is the visible spectrum, λ is the wavelength of the light
and x is the spatial coordinate. Assuming that the scene is illu-
minated by one light source and that the observed color of the
light source e depends on the color of the light source e(λ ) as
well as the camera sensitivity function c(λ ), then color constancy
is equivalent to the estimation of e =

∫

ω e(λ )c(λ )dλ , given the
image values of f, since both e(λ ) and c(λ ) are, in general, un-
known. This is an under-constrained problem and therefore it can
not be solved without further assumptions.

Pixel-based Color Constancy
Two well-known and often used algorithms are based on the

Retinex Theory proposed by Land [15]. The White-Patch algo-
rithm is based on the White-Patch assumption, i.e. the assump-
tion that the maximum response in the RGB-channels in caused
by a white patch. The second algorithm, the Grey-World algo-
rithm [5] is based on the Grey-World assumption, i.e. the aver-
age reflectance in a scene is achromatic. Another type of algo-
rithm are gamut-based methods, originally proposed by Forsyth
[9]. Gamut-based algorithms use more advanced statistical infor-
mation about the image, and are based on the assumption, that in
real-world images, one observes, under a given illuminant, only
a limited number of different colors. Even though the White-
Patch, Grey-World and gamut mapping are completely different
algorithms, they all have in common that they estimate the illu-
minant using only the pixel values in an image.

Edge-based Color Constancy
Recently, pixel-based methods are extended to incorporate

derivative information (i.e. edges) and higher-order statistics,
resulting in the Grey-Edge [17] and the derivative-based gamut
mapping [12].

The Grey-Edge actually comprises a framework that in-
corporates zeroth-order methods (e.g. the Grey-World and the
White-Patch algorithms), first-order methods (e.g. the Grey-
Edge), as well as higher-order methods (e.g. 2nd-order Grey-
Edge). Many different algorithms can be created by varying the
three parameters:
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where n is the order of the derivative, p is the Minkowski-norm
and fσ (x) = f⊗Gσ is the convolution of the image with a Gaus-
sian filter with scale parameter σ . Good results are obtained by
using instantiation e1,1,σ , i.e. a simple average of the edges at
scale σ also called the Grey-Edge method [17].

Another extension of pixel-based methods to incorporate
derivative information involves the gamut mapping. This method
has been extended to include not only pixel values, but also lin-
ear combinations of pixel values, e.g. image derivatives. The use
of image derivatives has some advantages over using pixel val-
ues directly as certain effects that cause a failure of the diagonal
model, like scattered light, have little effects on the derivative of
an image. It is shown that the derivative-based gamut mapping
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suffers less from these degrading conditions [12]. For simplic-
ity, however, in this paper the focus will be on the Grey-Edge
algorithm.

Edge Types
The aim is to analyze which edge types have the most in-

fluence on the accuracy of the illuminant estimation. To this
end, a spectral data set is used [4], consisting of 1995 surface
reflectance spectra and 287 illuminant spectra. These two differ-
ent kinds of spectra were gathered from different sources and the
whole data set contains a wide variety of colors and illuminants.
Each surface reflectance can be combined with every illuminant,
hence a large set of surfaces (i.e. RGB-values) can be created
for the experimental analysis. A transition is generated with real
spectra by taking the difference between two surfaces. For these
experiments, the following surfaces are created:

• Material surface mi:
mi =

∫

ω
ei(λ )c(λ )si(x,λ )dλ . (3)

• Shadow surface pi:

pi =
∫

ω

ei(λ )

φ
c(λ )si(x,λ )dλ . (4)

• Specular surface hi:
hi = mi + γ

∫

ω
ei(λ )c(λ )dλ , (5)

where φ and γ are random variables uniformly distributed be-
tween 1 and 4. Since the focus is on edge-based color constancy,
three different edge types are analyzed in this paper: material
edges, shadow edges and specular edges. A material edge is gen-
erated by a transition between two different surfaces from one
surface to another. A shadow edge is computed by an intensity-
difference: the difference between a normal, bright, surface and
the same surface with a lower intensity is taken as shadow tran-
sition. A specular edge is computed by taking the difference be-
tween the regular, bright surface and the specular surface:

• Material edge: mi −m j.
• Shadow edge: mi −pi.
• Specular edge: mi −hi.

Note that these edges can be considered to be step edges. In real-
world scenes, transitions are likely to be more gradual. However,
for the purpose of this analysis, these edges are used to give a
best-case assessment of algorithm performance.

In the first experiment, the performance of the Grey-Edge
algorithm is analyzed with respect to different edge types. Us-
ing the spectral data set, a number of random surfaces are cre-
ated, including n material surfaces, n shadow surfaces and n
specular surfaces , resulting in a total of 3n surfaces. Note that
to create these surfaces, the same illuminant is used. Using
these surfaces, n material edges, n shadow edges and n specu-
lar edges are created. The Grey-Edge algorithm is evaluated by
gradually increasing the number of edges. For each value of n
(n = {4,8,16,32,64,128,256,512,1024}), the experiment is re-
peated 1000 times. When a combination of different edge types
is used for the estimation of the illuminant, then all generated
edges of these types are used.

The second experiment involves color clipping. Would a
real-world image be created using the generated RGB-values,
then the pixel values are often bound to a maximum. This ef-
fect is called color clipping. Since the specular surfaces have
the highest RGB-values, these surfaces (and consequently the
specular edges) risk to be affected by color clipping. To ana-
lyze this effect, an experiment is performed using the same sur-

face reflectance and illuminant spectra. The setup of this ex-
periment is similar to the first experiment, i.e. n material sur-
faces are created, n intensity shadow surfaces and n specular sur-
faces. After that, the generated RGB-values are color clipped at
a gradually decreasing value. The clipping value is set such that
c% of the total number of surfaces (i.e. 3n) are clipped, where
c = {0,10,20,30,40}.

Results
To evaluate the performance of color constancy algorithms,

the angular error ε is widely used [14]. This measure is defined as
the angular distance between the actual color of the light source
el and the estimated color ee:

ε = cos−1(êl · êe), (6)

where êl · êe is the dot product of the two normalized vectors
representing the true color of the light source el and the estimated
color of the light source ee. Since the illuminant spectrum that is
used to create the surfaces is known, the correct color of the light
source el can be determined.

Different number of edges
The results of the first experiment are shown in figure 1. As

expected, using specular edges results in a close to ideal perfor-
mance. Less expected, however, is the fact that using shadow
edges results in a lower angular error than when using material
edges. A combination of both material edges and shadow edges
results in an intermediate performance.

To study the observation why using specular edges result
in a close to ideal performance, and why shadow edges result
in a better performance than when using material edges, the dis-
tribution of different edge types is considered. For the ease of
illustration of the physical properties of edge types, the edges are
converted to the opponent color space:

o1x =
Rx −Gx√

2
(7)

o2x =
Rx +Gx −2Bx√

6
(8)

o3x =
Rx +Gx +Bx√

3
(9)

where Rx, Gx and Bx and derivatives of the R, G and B channels,
respectively.

Figure 1. Mean angular error using the grey-edge, on different edge types,
plotted with a 95% confidence interval.
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(a) (b) (c)

Figure 2. Gamut in opponent color space of material edges, figure (a), shadow edges, figure (b) and specular edges, figure (c), put under one illuminant,
which is specified by the fourth axis. In figures (d)-(f), it is shown what happens with the gamut of the specular edges for decreasing clipping values. Figures
(d), (e) and (f) have 10%, 20% and 30% of the pixels clipped, respectively.

(a) (b) (c) (d)

Figure 3. The effects of clipping on the gamut of the specular edges. In figures (a)-(d), 0%, 10%, 20% and 30% of the total number of pixels is clipped,
respectively.

The distribution of edges in opponent color spaces is shown
in figure 2. From these graphs, it can be seen that the specu-
lar edges align perfectly with the diagonal representing the color
of the light source (shown by the fourth axis) . Further, the
shadow edges contain less variation in color than the material
edges, and the shadows are more directed towards the color of
the light source.

These graphs show that it is beneficial to use edges that are
aligned with the color of the light source. The specular edges are
all distributed on the diagonal representing the color of the light
source, and near-perfect color constancy can be obtained using
these edges. This observation is in accordance to pixel-based
highlight analysis, where highlights contain valuable information
about the color of the light source [1, 3]. Shadow edges are dis-
tributed denser around the color of the light source than material
edges, resulting in a higher performance.

Color clipping
In practice, pixel values are often bound to a certain maxi-

mum value. This effect is called color clipping. To analyze this
effect, a second experiment is performed using the same surface
reflectance and illuminant spectra. The results of this experi-
ment are shown in figure 4. The accuracy of the estimation using
the specular edges immediately starts to decrease significantly
when clipping is applied. The performance using the material
and shadow edges is less affected; the angular error does not sig-
nificantly increase until 40% of the total number of surfaces are

clipped.

The effects of color clipping on the gamuts of the specular
edges are shown in figure 3. These plots display the gamuts of the
specular edges after clipping 0%, 10%, 20% and 30% of the total
number of pixels. The gamuts of the specular edges slowly shift
towards the intensity axis (O3x). This causes the estimate of the
illuminant to bo biased towards white, and the effect increases as
more pixels are clipped. Since color clipping cannot be prevented
in practice, specular edges are less valuable.

Conclusion

In this paper, the performance of edge-based color con-
stancy was analyzed with respect to different edge types that
occurs in images. The experiments have been performed on a
spectral data set. The results show that, in theory, specular edges
contain a valuable clue in estimating the color of the light source.
However, because of color clipping, these edges can not be used
in real-world images.

The experiment further showed that a shadow edge in the
form of an intensity change is a more valuable clue than ma-
terial edges for color constancy. More experiments need to be
performed on real-world data to confirm these results. However,
preliminary results reveal that shadow edges can indeed improve
the performance of edge-based color constancy.
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Figure 4. Mean angular error using material edges, shadow edges and specular edges, for different clipping values.
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