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Abstract
According to recent physiological research results, there

are lots of individual differences already at the detection level
of our color vision system. It is not completely clear yet, how
the other levels of color vision system compensate the detection
differences. It is known that people with different kinds of color
vision system properties still experience similar color sensations.
This could be explained by the fact that instead of detecting and
analysing colors in exactly the same way, we all just have learned
to classify colors in a certain way. In this article, we experiment
with four models developed for replicating certain properties of
human color vision. We examine the color classification abilities
of these models and show the differences and similarities in their
behavior.

Introduction
After the light reflecting from an object has travelled

through the external and intermediate layers of the human eye,
it enters the first part of our color detection system: the retina.
It has been shown by measurements of a living human eye [1, 2]
that people with a very divergent distribution of short-, middle-
and long-wavelength sensitive cones on the retina can still have
perfectly normal color vision. Also the spectral sensitivities of
cones on the retina differ between individuals [3, 4].

Existing color vision models (for example Ingling and Tsou
[5], Bumbaca and Smith [6], De Valois and De Valois [7] and
Guth [8]) assume that all people process the same color signal
exactly in the same way. However, according to the previously
mentioned physiological experiments, there are lots of individ-
ual differences already at the detection level of our color vision
system. How the following neural levels of color vision compen-
sate the detection differences, is not completely clear yet. One
approach to explaining the similar color vision of people with
different kinds of color vision system properties could be that in-
stead of detecting and analysing each color in exactly the same
way, we all just have learned to classify colors in a certain way,
which eventually gives similar results to everyone else’s color
sensation.

In this article, we examine the color classification abilities
of four existing color vision models [5, 6, 7, 8]. All these mod-
els have the cone responses for color signals as their starting
point and red-green and blue-yellow opponent values as output.
Processing steps of the models differ from each other, and we
wanted to test, whether systems with different properties (like
people with differently structured visual system) are able to clas-
sify colors in the same way. Our goal in this paper is to find out,
whether it is easy to divide the output of the models into color
classes or not. It is possible that with more complicated classifi-
cation algorithms and/or with very careful pre-processing of data
the classification results could still be improved. However, our
main interest was not to find an optimal classification algorithm
for color, but to see if it is possible to perform reasonable classi-
fication for model outputs with a reasonably simple method.

Models
The color classification is performed using output of the fol-

lowing models: Ingling and Tsou [5], Bumbaca and Smith [6],
De Valois and De Valois [7] and Guth [8].

Ingling and Tsou model is a simple linear one-opponent
stage model. They present two different sets of formula, one
for dark- and another for light-adapted conditions (threshold and
suprathreshold forms). We have used the suprathreshold form,
where impact from S cones is present also in red-green channel.
This approach is analog to the fact of indiscriminate receptive
field surround mentioned in De Valois and De Valois model de-
scription. The processing of color signal in Ingling and Tsou’s
model starts by multiplying the incoming signal by Smith and
Pokorny cone fundamentals in order to get cone responses L, M
and S. After that, opponent stage responses are calculated by
summing up cone responses r−g, b−y, and Vλ (Eq. 1). We use
r−g and b−y responses in our experiments.
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Bumbaca and Smith’s color vision model for computer vi-
sion applications also has only one opponent stage in their model,
but unlike Ingling and Tsou, they are using logarithmic cone
sensitivity functions which causes their model to have nonlin-
ear features. Their goal was to build a computer vision system,
which would take the advantage of color vision discrimination
capabilities of the human color vision. In Bumbaca and Smith’s
model, the incoming signal is first multiplied by Smith and Poko-
rny cone fundamentals in order to get cone responses L, M, and
S. The nonlinear response of cones, L∗, M∗, and S∗ , (Eq. 2-4)
is simulated by taking logarithm of L, M and S signals. The non-
linear cone responses are summed in order to form achromatic
and chromatic channels A, C1, and C2 (Eq. 5). We use C1 and C2
responses in our experiments.

L∗ = log L (2)

M∗ = log M (3)

S∗ = log S (4)
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Parameters a, u1 and u2 are adjusted so that just-noticeable
difference in perception in AC1C2 space is a sphere of radius 1. α
and β are scaling parameters for the achromatic channel. In our
calculations, we used the following values defined in the original
paper of Ingling and Tsou: a = 22.6,u1 = 41.6,u2 = 10.5,α =
0.7186 and β = 0.2814.

De Valois and De Valois have built their three-stage linear
model based on the biological facts of human color vision. Their
paper presents two different possibilities for receptive field be-
havior: discrete and indiscriminate model. Models differ from
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each other so that in discrete version cells with L or M cone cen-
ter are assumed to have no effect from S cones in the surround-
ings. Indiscriminate version sums together all kind of cells in
the receptive field surroundings. We have considered in this pa-
per only the indiscriminate version. The processing in De Valois
and De Valois’s model starts also by multiplying the incoming
signal by Smith and Pokorny cone fundamentals in order to get
cone responses L, M and S. From cone responses, cone oppo-
nency signals LO, MO, and SO are calculated using the receptive
field theory (Eq. 6). Cone opponency signals are still summed
together to get perceptual opponency signals RG, BY , and A i.e.
red-green, blue-yellow, and achromatic channels (Eq. 7). We use
RG and BY responses in our experiments.
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Guth’s nonlinear three-stage model, ATD95, collects to-
gether the results of many previous versions. After ATD95, it has
still been deveoped further the latest release being ATD04 [9], but
the changes made for the later revisions of Guth’s model have no
big effect on the color discrimination properties of the model. In
this article, we use an implementation based on Guth’s ATD95
model. For practical experiments in this article in order to make
model comparable to others, we are assuming self-adaptation
(test stimulus was also the adapting stimulus) i.e. there is no ef-
fect from the surrounding signals. Calculations for Guth’s model
are presented in Equations 8 - 14), where Equations 8 - 11 de-
scribe the calculation of nonlinear cone responses, adding noise
and gain control. In Equations 12 and 13 initial responses for the
first and second ATD stages are calculated. Initial responses are
still further compressed using Equation 14. We use responses T2
and D2 for describing the color in our experiments.

L = [0.66(0.2435X +0.8524Y −0.0516Z)]0.70 +0.024 (8)

M = [1.0(−0.3954X +1.1642Y +0.0837Z)]0.70 +0.036 (9)

S = [0.43(0.04Y +0.06225Z)]0.70 +0.31 (10)

Rg = R
σ

σ +R
, (11)

where R ∈ {L,M,S} and σ = 300.
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R j =
R ji

200+ |R ji| , (14)

where R ∈ {A,T,D} and j ∈ {1,2}.

Experiments
We tested the classification performance of the four color

vision models mentioned above. Classification of colors was per-
formed using the responses of the last stage of each model using
only the color opponent channels (red-green and blue-yellow)
forming a 2-dimensional color space. For the classification, we
used a simple subspace method [10] and represented each color
class by its first eigenvector. Also the location of the class re-
lated to the origin of the color space was taken into account by
using the mean of each class. Algorithm used for the subspace
classifier:

c = sample to be classified

for each class j

e = eigenvector representing class j

m = mean of class j

e_c = abs(dotproduct(e,c))

m_c = sign(dotproduct(m,c))

res[j] = e_c*m_c

end

classify c to class j, where res[j] is largest

Classifier was trained separately for each color vision
model. If necessary, the data was always centered so that the
origin of training color set was located at point (0,0). The clas-
sifier was trained with half of the color samples of the Munsell
Book of Color - Glossy Collection. Munsell colors were divided
into 10 classes according to the Munsell hue categorization (B,
BG, G, GY, Y, YR, R, RP, P, PB) and each class was randomly
divided into two. The whole book contains in total 1600 sam-
ples, which means that model was trained with 800 samples. The
rest of samples were used as test set. Implementations of color
vision models and classification algorithms were done with Mat-
lab. Spectral data with 1 nm accuracy was used as initial input to
the models. Munsell data at CIE A*B* space is shown in Figure
1.

Figure 1. Munsell data at CIE A*B* space. Dark squares are the repre-

sentatives of each color class.

Figures 2 - 5 show the color distribution of Munsell col-
ors using the 2-dimensional output of the four color vision mod-
els. Numerical data representing the accuracy of classification
is shown in the form of confusion matrices separately for each
model. Values are percentages of samples classified to a certain
hue class. Each row shows how samples belonging to one color
class are classified as different colors. Percentages don’t neces-
sarily sum up to exactly 100 procent because of rounding of the
results.
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Figure 2. Munsell data at the 2nd stage of Ingling and Tsou model. Dark

squares are the representatives of each color class.

Confusion matrix for classification of test samples with
Ingling and Tsou model.

B BG G GY Y YR R RP P PB
B 49.3 50.7

BG 50 35.9 14.1
G 19.4 47.2 19.4 13.9

GY 1.4 20.8 51.4 11.1 2.8 11.1 1.4
Y 55.6 35.6 8.9

YR 39.5 50 10.5
R 46.4 45.4 8.2

RP 65.5 34.5
P 100

PB 12.8 87.2

Figure 3. Munsell data at the 2nd stage of Bumbaca and Smith model.

Dark squares are the representatives of each color class.

Confusion matrix for classification of test samples with
Bumbaca and Smith model.

B BG G GY Y YR R RP P PB
B 77.6 10.4 11.9

BG 6.3 92.2 1.6
G 30.6 69.4

GY 22.2 72.2 5.6
Y 1.1 71.1 27.8

YR 2.3 72.1 25.6
R 91.8 8.2

RP 10.3 83.9 5.7
P 1.4 91.7 6.9

PB 100

Figure 4. Munsell data at the 3rd stage of De Valois and De Valois model.

Dark squares are the representatives of each color class.

Confusion matrix for classification of test samples with De
Valois and De Valois model.

B BG G GY Y YR R RP P PB
B 10.4 9.0 16.4 6.0 7.5 29.9 19.4 1.5

BG 10.9 3.1 7.8 54.7 3.1 4.7 15.6
G 5.6 19.4 63.9 1.4 1.4 8.3

GY 5.6 11.1 65.3 8.3 9.7
Y 8.9 21.1 21.1 10.0 38.9

YR 12.8 15.1 12.8 12.8 45.3 1.2
R 49.5 24.7 25.8

RP 20.7 66.7 12.6
P 15.3 73.6 11.1

PB 12.8 59.0 15.4 12.8

Figure 5. Munsell data at the 3rd stage of ATD95 model. Dark squares

are the representatives of each color class.

Confusion matrix for classification of test samples with
ATD95 model.

B BG G GY Y YR R RP P PB
B 86.6 13.4

BG 4.7 92.2 3.1
G 26.4 73.6

GY 12.5 86.1 1.4
Y 100

YR 7.0 90.7 2.3
R 13.4 81.4 5.2

RP 18.4 74.7 6.9
P 1.4 98.6

PB 19.2 1.3 79.5
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Discussion
There are large differences in the color classification abil-

ities of examined color vision models. If only the distribution
of Munsell colors is considered, all models but De Valois and
De Valois create quite easily distinguishable color clusters. It is
quite clear that De Valois and De Valois model, which has been
defined purely based on the biological facts of the human color
vision system, is not replicating well the perceptual properties of
color vision. Deeper examination of classification results shows
that the clusters of Ingling and Tsou model are somewhat over-
lapping, which causes problems with color classification. Only
colors Ingling and Tsou model is able to classify with satisfactory
results are purple and purple-blue.

Models whose coefficients have been chosen so that the
models are able to replicate the results of certain psychophysical
experiments (especially Guth’s ATD model) work a lot better in
the classification task. Bumbaca and Smith’s and Guth’s models
both give good classification results. Lowest result for Bumbaca
and Smith is 69.4 % for green colors and for Guth 73.6 %, also
for green colors. Bumbaca and Smith model is able to give 100
% classification for purple-blue colors, and Guth model has full
100% classification for yellow colors. With misclassifications
both models behave in a very similar way: always when a color
is misclassified, it is classified to one of its neighboring color
classes. This kind of behavior is actually typical also for human
beings - it is not always easy to tell, where exactly the border line
between two different colors is.

It is interesting to see that it is possible to gain similar clas-
sification results either by using quite a simple two-stage color
model or a more complicated three-stage color model. One com-
mon factor for both models is that they introduce some kind of
nonlinearity in the performed calculations. Both models also
have parameters that have been defined for improving the per-
ceptual properties of the output color space.
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