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Abstract
The correction of the effects of color-weakness is difficult

if not impossible. One of the reasons is that are no objective
criterions available to evaluate corrections since it is difficult to
quantify the color perception of an individual. Also the degree
and the character of color-weakness vary widely among individ-
uals and different color stimuli. In this paper, we use Riemann
geometry to construct a new method for color-weakness correc-
tion. The basic mechanism is the matching between the discrim-
ination thresholds of color-weak and of color-normal observers.
The goal is to provide the same color perception of color-normal
observers to the color-weak observer: it takes into account the
individual differences between observers and since it defines a
global deformation of the whole color space it is applicable for
correction of complex visual inputs such as natural images.

Introduction
The properties of human color perception vary widely.

There is, for example, a significant part of the male population
that is color-blind. Human color perception depends on the exis-
tence of the three (LMS) of cones in the retina. They have dif-
ferent spectral sensitivities and if one or two of them are missing
the observer cannot discriminate between certain pairs of col-
ors. Dichromats are observers with one missing cone type. But
color perception varies even among the population that is not
color blind. These observers may make color discriminations
that are different from the discriminations of persons with nor-
mal color vision, an effect known as anomalous trichromacy or
color-weakness. Finally, it is also known that the distribution
of the cones in the retina of observers with normal color vision
varies widely. More details can be found in books on color vision
and in [6],[7].

Color-blindness and color-weakness are also of great prac-
tical importance since many communication processes make use
of color in various degrees. For critical applications colorblind
and colorweak users must be able to discriminate color differ-
ences.

A typical approach used in universal color design to solve
this problem is to amplify the color-contrast between figures or
symbols and the background. However in order to apply this ap-
proach to natural images, one needs to know how much and in
which direction he/she should correct each color. Unfortunately,
there is no objective criterion for such a correction because the
color perception properties of users is difficult to estimate. Fur-
thermore, the characteristics of color perception vary greatly be-
tween individuals. Since it is difficult to characterize the color
weakness of an observer exactly, there is no way to control the
extent we should compensate his or her color defect. For these
reasons, people used to believe that exact correction is simply
impossible in principal.

In this paper we introduce a color-weak correction method
based on Riemann geometry. The goal of this method is to find
a way to correct color-weakness, so that the corrected color re-

production gives color-weak observers the same color perception
as the original to color-normals. This correction should take into
account individual differences, and it should be applicable to nat-
ural images to be reproduced on different media like prints, TV
or movies.

Color-blind model and color-weak correction
Recently, simulation models for color-blind particularly

dichromatic color perception are devoloped in [2], [3]. We deal
here with a popular method to generate color displays for color-
blind observers described in [2]. In its simplest form it maps the
input space of a monitor (given by the unit cube of normed RGB
vectors) to the three-dimensional LMS coordinate space describ-
ing the stimulation states of the three cone types.

The stimuli perceived by the dicromats consists of the two
planes which are spanned by three invariant hues which are per-
ceived equally by both color-normal and color-blinds.

Figure 1. Brettel’s dichromat model

This model describes color-blind vision as a projection op-
eration along L axis for protanopia and M axis for deuteranopia,
which are in correspondence to the confusion lines.

Color-weakness or partial color-blindness is known as an
intermediate state between color-normal and color-blind vision.
Its origin is more complicated to explain. Possible causes are
certain malfunctions of either the retina or the visual path or dif-
ferent mechanisms in the brain. The result is however a large
variations in the forms of color-weakness and it is therefore dif-
ficult to characterize and to compensate its effects.

A typical approach in universal color design is to simu-
late or to detect color-blindness by e.g. wearing color-blocked
glasses and then to intensify the color-contrast between figures
or symbols and background. In this way letters of an alphabet or
symbols can be made easier to distinguish for color-handicapped
people by presenting them on a background of the complemen-
tary color. For such a correction, Brettel’s color-blind model pro-
vides reference information besides the direction information of
the confusion lines .

Unfortunately, even for these simple symbols and an aver-
age color-handicapped observer, one needs to know how much
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the color should be corrected. Much more is required if one
wants to construct color correction methods applicable to natural
images to be shown as still-pictures, TV sequences and movies,
and if one wants to take into account the characteristics of indi-
viduals. We will show latter that for the same observer, the extent
of color-weakness could vary a great deal, and that the properties
are often more complicated than Brettel’s model could describe.
This holds even true for the observers classified as color-normal
for which there is a great variation of their color vision charac-
teristics.

Color spaces as Riemann spaces
The only observable data in color perception are usually

color differences. In particular, the most accessible and reli-
able measurement are small or local color differences. The
best-known such measurement are the so-called just noticeable-
difference (jnd) thresholds or the discrimination thresholds, mea-
suring the minimal color-difference from the test colors that the
observer can detect.

These threshold measurements provide at every color a
measure of local distance in color space as follows: denote the
test color x as the origin and a color vector close to x as y with
respect to the origin, then the discrimination ellipses/ellipsoids
are the unit circles/spheres centered at the test color x, which can
be expressed by the following equation:

yT G(x)y = 1 (1)

Here the positive definite matrix G(x), varying with the lo-
cation of the test color x, is uniquely determined by the el-
lipses/ellipsoids and vice versa. With such a matrix G(x) defined
at every x, the local distance around x can be expressed as

‖ dx ‖2= dxT G(x)dx. (2)

Such a space with a smoothly defined local distance or the matrix
G(x) (known as Riemann metric) is called a Riemann space [?].

Another yet even more important quantity in color percep-
tion is large color differences to be distinguished from small
color differences. They are however more subjective and hence
harder to deal with.

In our model the color difference between two points in a
color space is expressed as distance between the two points. In a
Riemann space, the distance between points x and x′ is defined as
the length of the shortest curve connecting the two points. This
shortest curve is known as a geodesic.

Consider a map f from a color space C1 to another color
space C2. Denote the Riemann metric of C1 as G1(x), and the
Riemann metric of C2 as G2(y) where y = f (x). The condition
for f to be local or small color-difference preserving at x is that
f maps the discrimination threshold at x to the threshold at y, or

G1(x) = (D f )T G2(y)D f , (3)

where D f is the Jacobian matrix of f ,[?].
In Riemann geometry, such a color-difference preserving

mapping at every points is called a local isometry. A map pre-
serving large color-differences are called global isometry, which
means that the distance between any pair of points in one space
is equal to the distance between the corresponding pair of points
in the other space.

Using tools from Riemann geometry it can be shown that
two locally isometric spaces are also globally isometric. In other
words, if we can match the thresholds at every corresponding
colors, such that the small color differences are adjusted to be
always the same everywhere, then the large color difference be-
tween any corresponding pair of colors is also identical. [4],[8].

Correction by discrimination threshold
matching

In order to present the same color stimuli to a color-weak
observer as perceived by color-normal observers, the most natu-
ral way is to transform the color space of the color-weak observer
so that it has the same geometry, and therefore the same color
differences, as the color space of color-normal observers.

From the previous section, we know that all we need is an
isometry between the color space of the color-weak observer and
the color space of color-normal observers. In order to construct
such an isometry, it is enough to meet the local isometry condi-
tion (3) everwhere.

Therefore we propose a new criterion for color-weak cor-
rection to match discrimanation threshold ellipses/ellipsoids be-
tween color-weak and color-normal observers.

This isometry or color difference preserving map which
transforms the color space Cw of the color-weak observer to Cn
of color-normal observers is central to our method. We call this
map ”the color-weak” map and denote it as

w : Cn −→Cw, x �−→ y = w(x) (4)

In fact, the color-weak map for an observer can be estimated
thresholds matching as follows. Assume that a color stimulus x
perceived by color-normals is mapped by w to y = w(x) perceived
by a color-weak observer. If we have discrimination thresh-
olds Gn(x) of the color-normal and the corresponding thresh-
olds Gw(y) for color-weak, then the Jacobian matrix Dw of w
can be obtained by the threshold matching condition:

Gw(y) = (Dw)T Gn(x)Dw (5)

To correct the color-weakness, we invert the color-weak map w.
In particular, before showing an image to the color-weak ob-
server we apply the inverse color-weak map w−1 to it. Then this
preprocessed image will be perceived by the color-weak observer
in the same way the original image by the color-normal.

On the other hand, applying w to the input image and show-
ing it to color-normal observers will provide them the same ex-
perience as the color-weak observer.

Measurement and Estimation of thresholds
Before we can apply the Riemann geometric strategy de-

scribed above we first need to estimate the discrimination thresh-
olds from measurement data. This is done as follows. First we
select the center color of an ellipsoid as the origin . Then n points
xi = (xi,yi,zi), i = 1 · · ·n on the surface of the ellipsoids are sam-
pled. We then substitute the coordinates of these points into the
defining equation of the ellipsoid,

ax2 +by2 +cz2 +dxy+exz+ f yz = 1 (6)

The coefficients in the equation are obtained by e.g. least squares
fitting.

In particular, define

α := (a,b, · · · , f )T β := (1,1, · · · ,1)T (7)

A :=
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(8)

Then one has

Aα = β (9)

CGIV 2008 and MCS’08 Final Program and Proceedings 209



This can be solved by e.g. an generalized inverse matrix A+:

α = A+β , e.g. A+ =
(

AT A
)−1

AT (10)

The Riemann metric is

G :=

⎛

⎝
a

d/2
e/2

d/2
b

f /2

e/2
f /2
c

⎞

⎠ (11)

In our experiments we measured the discrimination thresh-
old ellipsoids using a 10 degree visual field of size 14cm×14cm
seen from a distance of 80cm. The discrimination threshold
data were measured for 45 college students (38 male, 7 female,
1 color-weak) in CIEXYZ coordinates. We choose 13 points
among the 25 centers of MacAdam ellipsoids within the gamut
of the monitor as test colors.

We estimate 3D threshold ellipsoids at the above 13 test col-
ors. Around each of them 16 directions are measured. The dis-
tribution of the 16 direction is not uniform but denser around the
direction of the confusion lines and long axes of threshold ellip-
soids. The average thresholds of color-normal and thresholds of
the color-weak observer are shown in Fig. 2 and Fig. 3
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Figure 2. Measurement of threshold ellipsoids for color-normal observers
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Figure 3. Measurement of threshold ellipsoids for a color-weak observer

Correction based on Brettel’s model
We now consider color-weakness and its correction using

Brettel’s model. The color-weak map and correction are shown

in Fig. 4. We assume that the color-weak map will map every
stimulus towards the color-blind stimuli plane without reaching
it. In other words, every color-normal stimuli Q is mapped along
the confusion lines to a point Q′′ between Q and color-blind stim-
ulus Q′.

Figure 4. Correction based on Brettel’s model

The 1D color-weak mapis defined as follows:.

Q” = w(Q) = ωQ′ +(1−ω)Q (0 ≤ ω ≤ 1) (12)

= Q′ +(1−ω)(Q−Q′) (13)

We will call ω the color-weak index which indicates degree of
color-weakness in percentage of color-blindness. The observer
is completely color-blind if ω = 1 and a color-normal if ω = 0.

The color map w simulates color-weak vision when applied
to the original image. The correction map is the inverse of the
color-weak map w−1, which preprocesses the original image as
follows.

P = w−1(Q) = Q′ + 1
1−ω

(Q−Q′) (14)

Substituting the corrected color P into (12) one can confirm that
the color-weak observer actually perceived the same color as the
color-normals do.

To estimate the color-weak map w or the color-weak in-
dex ω , we use the threshold matching condition as follows: De-
note the average length of the discrimination threshold of color-
normals as an and the length of discrimination of threshold of the
color-weak observer as aw, then apply (5) to obtain

1−ω =
an

aw
, ω = 1− an

aw
. (15)

The discrimination threshold along the confusion lines of
protanopia, of the protanopic color-weak observer and an average
of color-normal observers are shown in Fig 5 and Fig. 6. Fig. 7
shows the distribution of ω for the color-weak observer.

Extension to 2D and 3D cases
As we have seen in Brettel’s model of color-blindness, mod-

eling and correction of color-weakness all occurred in one di-
mension, on the confusion lines. This is an over-simplified mod-
eling of color-weakness. In fact, our experiments showed that
color-weakness usually occurs in more than one direction, and
takes more complicated forms.
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Figure 5. 1D Thresholds of color-normal
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Figure 6. 1D Thresholds of a color-weak protanope
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Figure 7. The distribution of the color-weak indices

Now we extend the color-weak map and correction alThe
distribution of the color-weak indicesgorithm to 2D and 3D
cases. In the 1D case, the color weak map can always be charac-
terized by one parameter, the color-weak index ω . However, in
the 2D and 3D cases, the color-weak map becomes a 2 by 2 or 3
by 3 matrix W defined locally.

Estimation of the color weak matrix W is based on matching
the threshold ellipses using (5). Below, we show a method to
compute W for the 2D case. The 3D case can be done similarly.

Denote the Jacobian of w at i-th test color as Wi, then locally

y = Wix. (16)

The matrix Wi can estimated using the corresponding points (e.g.
long and short axes) on the two threshold ellipses. For an exam-
ple, the sections of the ellipsoids in Fig. 3 with the chromaticity
plane are shown in Fig. 8 and Fig. 9.
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Then the entries of W can be obtained as
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here ()+ denotes a generalized inverse matrix.
Once the color-weak map is obtained, one can use it in cor-

rection and simulation as before.
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Figure 8. Threshold ellipses of color-normal observers
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Figure 9. Threshold ellipses of the color-weak observer

Simulation and Correction
In Fig. 10, the color-weak map is estimated using Brettel’s

model of protanopia. The color-weak simulated image (top) and
the corrected image (bottom) are produced by applying the color-
weak map and its inverse to the original image (middle).

In Fig. 11, the color-weak map is estimated using match-
ing of discrimination threshold ellipsoids. Again, the color-weak
simulated image, the original image and the corrected image are
shown in the same order. Obviously the strong tritanopia (blue-
orange) of the observer (see Fig. 9) is also corrected by the color-
weak map in higher dimension.

Evaluation
We evaluated the corrected images and color-weak simu-

lation images using the semantic differentiation (SD) test de-
scribed in [5]. This is a standard culture-independent procedure
to quantitatively evaluate subjective impressions. First a selec-
tion of concept-pairs of adjectives related to the test images were
chosen by an individual group. Then the test images are scored
by another group and the color-weak observer using a 5 points
or 7 points scale for each concept-pair of the adjectives. The
SD curves obtained by connecting the scores on every scale of
concept-pairing adjectives are used to compare the impressions.

In particular, two sets of SD tests are compared with each
other: (1) between the original image evaluated by color-normals
and the corrected image by the color-weak (Fig. 12), (2) be-
tween the ”color-weak simulation” of the original image eval-
uated by the color-normals and the original image evaluated by
the color-weak (Fig. 13). These two comparisons show that the
color-normals obtained very similar impressions from the origi-
nal image as the color-weak from the corrected image, and that
the color-weak’s impression on the original image is very close
to that of the color-normals from the ”color-weak simulation” of
the original image.

Conclusions
We proposed a new criterion for color-weak correction and

simulation to provide the same color perception of color-normal
observers to a color-weak observer. A color-weak map is defined
as a color-difference preserving map between the color spaces
of color-normal and color-weak observers, which can be ob-
tained by matching of discrimination thresholds between these
two kind of observers. This method is applied using measure-
ment of threshold data to Brettel’s dichromat model and ex-
tended to higher dimension. The performence is evaluation by

Figure 10. Color-weak simulated, the original and corrected images using

Brettel’s model
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Figure 11. Color-weak simulated, the original and corrected images by

ellipsoids matching

Figure 12. SD evaluation for color-weak simulation

Figure 13. SD evaluation for color-weak correction

SD method. An even more accurate approach is to use geodesic
coordinates [9]. This method can be extended to simulate on one
individual aother one’s color vision, as long as their discrimina-
tion threshold data are available.
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