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Abstract 
Several video compression methods have in common their 

conciseness depends of the degree of redundancy between the frames 

associated to the sequences they describe. Cartoon animations are a 

good example of animations with an elevated redundancy and from 

which an elevated compression is expected. However, scientific 

sequences provide us with a huge set of examples where the degree of 

redundancy is very low or inexistent. Because of the accuracy required 

when these sequences are analyzed, any kind of threshold, which could 

elevate the redundancy degree, is prohibited. In this work, a proposed 

solution to the addressed problem considers the linearization of each 

frame. That is, a frame can be considered as a matrix but by stacking 

its columns on top of one another a vector is obtained. In this way each 

pixel can be referenced by only one coordinate in the vector. Starting 

from these considerations a geometric representation is built: A video 

sequence will be associated to a unique 3D Orthogonal  

Pseudo-Polyhedron (3D-OPP). Such 3D-OPP is embedded in a 3D 

Time-Color Space where X1-axis corresponds to the position of pixels 

in the linearization, the second spatial dimension (X2-axis) is associated 

to the color value of a pixel, and finally, X3-axis describes the 

displaying time of frames in the original animation. Such 3D-OPP can 

be compressed, manipulated, and displayed in screen by expressing it 

according to the Extreme Vertices Model in the n-Dimensional Space 

(nD-EVM). The nD-EVM shares the representation of n-Dimensional 

Orthogonal Pseudo-Polytopes (nD-OPPs) by considering only a subset 

of their vertices.  

 

Introduction and Problem Statement 
The Extreme Vertices Model (3D-EVM) was originally presented, 

and widely described in [1], for modeling 2-manifold Orthogonal 

Polyhedra and later considering both Orthogonal Polyhedra (3D-OPs) 

and Pseudo-Polyhedra (3D-OPPs) [2]. This model has enabled the 

development of simple and robust algorithms for performing the most 

usual and demanding tasks on solid modeling, such as closed and 

regularized Boolean operations, solid splitting, set membership 

classification operations and measure operations on 3D-OPPs. It is 

natural to ask if the EVM can be extended for modeling n-Dimensional 

Orthogonal Pseudo-Polytopes (nD-OPPs). In this sense, some 

experiments were made, in [8], where the validity of the model was 

assumed true in order to represent 4D and 5D-OPPs. Finally, in [9] was 

formally proved that the nD-EVM is a complete scheme for the 

representation of nD-OPPs. The meaning of complete scheme was 

based in Requicha's set of formal criterions that every scheme must 

have rigorously defined: Domain, Completeness, Uniqueness and 

Validity. Although the EVM of an nD-OPP has been defined as a 

subset of the nD-OPPs vertices, there is much more information about 

the polytope hidden within this subset of vertices. In the following 

sections there will be described basic procedures and algorithms in 

order to obtain some of this information. 

It is well known that several video compression methods were 

invented to be able to effectively store video data on common digital 

media. Their conciseness depends of the degree of redundancy between 

the frames associated to the sequences they describe. As noted in [4], 

cartoon animations are a good example of animations with an elevated 

redundancy where these compression methods can be applied expecting 

almost an optimal performance. For example, Koloros & Zára [4] 

separate in first place the original animation frame into a set of regions 

using unsupervised image segmentation techniques. Then they use 

motion estimation in order to register parts of the background to stitch 

and store background layer as one big image. Shapes of homogeneous 

color regions in the foreground layer are converted from raster to vector 

representation and encoded separately. To search for frame duplicities 

and to store new frames they use a pool of already stored frames [4]. 

Another example is given by the work of Kwatra and Rossignac [6]. In 

their approach each region in a frame is first represented as a 3D 

volume by sweeping its 2D shape through the time. Then their 

Edgebreaker compression scheme is used to encode volume geometry. 

The outputs given by the methods provided by these authors ([4] & [6]) 

are vectorized video sequences: animations described in terms of 

geometrical elements (polygons, lines, volumes, etc.) whose 

visualization on screen depends on the temporal dimension. However, 

these authors did not address the problem of vectorization for complex 

color and gray scale image sequences. A contribution for addressing the 

last comment was given in [11]. In such case, each frame in a color 

video is initially represented as a set of orthogonal polygons whose 

displaying time depends on the temporal dimension. Hence, a 

vectorized 2D color video sequence is expressed as a 4D Orthogonal 

Pseudo-Polytope (4D-OPP) whose first two dimensions corresponds to 

pixels’ original coordinates in a frame, the third dimension is associated 

to the color to apply to such pixels, and finally the fourth dimension 

describes time. The size and compression of such 4D-OPP depend on 

the redundancy degree between the frames. As can be seen, the above 

methods are sustained by the hypothesis the sequences represented 

contain a high level of redundancy. Obviously, it can be concluded that 

by more level of redundancy more conciseness from these procedures 

can be expected.  

    
Frame 1 Frame 3 Frame 5 Frame 7 

Figure 1. A sequence of frames that presents a coronagraph image  
of a radiation storm (taken from [5]). 

 

An interesting situation comes from the fact that scientific 

sequences provide us with a huge set of examples where the degree of 

redundancy between frames is very low or inexistent. Consider for 

example the sequence presented in Figure 1. Such sequence describes a 

coronagraph image of a radiation storm which took place in January 20, 

2005 [5]. The main characteristic in this sequence shows that the value 

of a pixel (inside the main circle) in a frame is distinct from the value of 

that same pixel in the next frame. Because of the accuracy required 

when these sequences are analyzed, any kind of threshold, which could 

elevate the redundancy degree, is prohibited. 

It is common to think of a frame by considering its original two 

spatial dimensions for each one of its pixels. A possible solution to the 

addressed problem could consider the linearization of each frame. That 

is, a frame can be considered as a matrix but by stacking its columns on 

top of one another a vector is obtained. In this way each pixel can be 

referenced by only one coordinate in such vector. Hence, we deal with 

only one spatial dimension instead of the original two dimensions. 

Obviously, there is a way to recover the original position of a pixel 

given the original width and height of its frame. It can be observed that 

a 3D-OPP, embedded in what we call 3D Time-Color Space, can 

represent an animation: X1-axis will correspond to the position of pixels 

in the linearization, X2-axis will refer to their red-green-blue integrated 

components, and X3-axis will be associated to time. The compression, 

manipulation, and displaying in screen of the represented sequences is 

performed through the 3D-EVM. The proposed methodologies will be 

described in the third main section. 
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The Extreme Vertices Model 
in the n-Dimensional Space (nD-EVM) 
Preliminary Background:  
n-Dimensional Orthogonal Pseudo-Polytopes  

Definition 2.1: A Singular n-Dimensional Hyper-Box in 
n�  is the 

continuous function : [0,1] [0,1]

( )

n n n

n

I

x I x x

→

=∼

 

Definition 2.2: For all i, 1 ≤ i ≤ n, the two singular (n-1)D  

hyper-boxes 
( ,0)

n

iI  and 
( ,1)

n

iI  are defined as follows: If 1[0,1]n
x

−∈  then 

• 
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Definition 2.3: In a general singular nD hyper-box c the (i,α)-cell is 

defined as 
( , ) ( , )

n

i i
c c Iα α= �  

Definition 2.4: The orientation of a cell 
( , )

n

i
c I α�  is given by ( 1) iα +− . 

Definition 2.5: An (n-1)D oriented cell is given by the  

scalar-function product 
( , )( 1)i n

i
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α
α
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Definition 2.6: A formal linear combination of singular general kD 

hyper-boxes, 1 ≤  k ≤  n, for a closed set A is called a k-chain. 

Definition 2.7 [14]: Given a singular nD hyper-box In the  

(n-1)-chain, called the boundary of In, is given by  
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Definition 2.8 [14]: Given a singular general nD hyper-box c the  

(n-1)-chain, called the boundary of c, is defined by  

( , )

1 0,1

( ) ( 1)
n

i n

i

i

c c I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑ �

 

Definition 2.9 [14]: The boundary of an n-chain 
ic∑ , where each ci 

is a singular general nD hyper-box, is given by ( ) ( )i ic c∂ = ∂∑ ∑  

Definition 2.10: A collection c1, c2, …, ck, 1 ≤ k ≤ 2n, of general singu-

lar nD hyper-boxes is a combination of nD hyper-boxes if and only if 

�

( )( )
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In the above definition the first part of the conjunction establishes 

that the intersection between all the nD general singular hyper-boxes is 

the origin, while the second part establishes that there are not 

overlapping nD hyper-boxes. 

Definition 2.11: An n-Dimensional Orthogonal Pseudo-Polytope p, or 

just an nD-OPP p, will be an n-chain composed by nD hyper-boxes 

arranged in such way that by selecting a vertex, in any of these  

hyper-boxes, we have that such vertex describes a combination of nD 

hyper-boxes (Definition 2.10) composed up to 2n hyper-boxes. 

The nD-EVM: Foundations 
Definition 2.12: Let c be a combination of hyper-boxes in the  

n-Dimensional space. An Odd Edge will be an edge with an odd 

number of incident hyper-boxes of c.  

Definition 2.13: A brink or extended edge is the maximal uninterrupted 

segment, built out of a sequence of collinear and contiguous odd edges 

of an nD-OPP. 

Definition 2.14: The Extreme Vertices of an nD-OPP p are the ending 

vertices of all the brinks in p. EV(p) will denote to the set of Extreme 

Vertices of p. 

Let Q be a finite set of points in 3� . In [2] was defined the  

ABC-sorted set of Q as the set resulting from sorting Q according to 

coordinate A, then to coordinate B, and then to coordinate C. For 

instance, a set Q can be ABC-sorted is six different ways: X1X2X3, 

X1X3X2, X2X1X3, X2X3X1, X3X1X2 and X3X2X1. Now, let p be a  

3D-OPP. According to [2] the Extreme Vertices Model of p, EVM(p), 

denotes to the ABC-sorted set of the extreme vertices of p. Then 

EVM(p) = EV(p) except by the fact that EV(p) is not necessarily sorted. 

In this work it should be assumed that the coordinates of extreme 

vertices in the Extreme Vertices Model of an nD-OPP p, EVMn(p) are 

sorted according to one fixed ordering taken from the possible n! 

permutations.  

Definition 2.15: Let p be an nD-OPP. The Extreme Vertices Model of 

p, denoted by EVMn(p), is defined as the model as only stores to all the 

extreme vertices of p. 
 

Sections and Slices of nD-OPPs 
Definition 2.16: Let p be an nD-OPP. A kD couplet of p, 1<k<n, is the 

maximal set of kD cells of p that lies in a kD space, such that a kD cell 

e0 belongs to a kD extended hypervolume if and only if e0 belongs to an 

(n-1)D cell present in ∂(p). 

Definition 2.17: The Projection Operator for (n-1)D cells, points, and 

set of points is respectively defined as follows: 

• Let 
( , ) 1( ( )) ( ,.., )n

i nc I x x xα =  be an (n-1)D cell embedded in the nD 

space. ( )( , )( ( ))
n

j ic I xαπ  will denote the projection of the cell 

( , )( ( ))n

ic I xα
 onto an (n-1)D space embedded in nD space whose 

supporting hyperplane is perpendicular to Xj-axis: 

( )( , ) 1
ˆ( ( )) ( ,..., ,..., )n

j i j nc I x x x xαπ =  

• Let 
1( ,..., )nv x x=  a point in n� . The projection of v in the (n-1)D 

space, denoted by ( )j vπ , is given by 
1

ˆ( ) ( ,..., ,..., )j j nv x x xπ =  

• Let Q be a set of points in n� . The projection of the points in Q, 

denoted by ( )j Qπ , is defined as the set of points in 1n−�  such that 

{ }1( ) : ( ),n n

j jQ p p x x Qπ π−= ∈ = ∈ ⊂� �  

Where ˆ
jx  is the coordinate corresponding to Xj-axis to be suppressed.  

Definition 2.18: Consider an nD-OPP p: 

• Let 
inp  be the number of distinct coordinates present in the vertices 

of p along Xi-axis, 1 ≤ i ≤ n. 

• Let ( )i

k pΦ  be the k-th (n-1)D couplet of p which is perpendicular to 

Xi-axis, 1 ≤  k ≤ npi. 

Definition 2.19: A Section is the (n-1)D-OPP, n>1, resulting from the 

intersection between an nD-OPP p and a (n-1)D hyperplane 

perpendicular to the coordinate Xi -axis, 1 ≤ i ≤ n, which not coincide 

with any (n-1)D-couplet of p. A section will be called external or 

internal section of p if it is empty or not, respectively. ( )i

kS p  will refer 

to the k-th section of p between ( )i

k pΦ  and 
1( )i

k p+Φ , 1 ≤ k < npi.  

Computing Couplets and Sections 
Theorem 2.1 [9]: The projection of the set of (n-1)D-couplets, 

( )( )i

i k
pπ Φ , of an nD-OPP p, can be obtained by computing the 

regularized XOR (⊗) between the projections of its previous 

( )1( )i

i kS pπ −
 and next ( )( )

i

i kS pπ  sections, i.e., 

( ) ( ) ( )1( ) ( ) * ( ) , [1, ]i i i

i k i k i k ip S p S p k npπ π π−Φ = ⊗ ∀ ∈  

Theorem 2.2 [9]: The projection of any section, ( )( )i

i kS pπ , of an  

nD-OPP p, can be obtained by computing the regularized XOR between 

the projection of its previous section, ( )1( )i

i kS pπ −
, and the projection 

of its previous couplet ( )( )i

i k pπ Φ . 

 

The Regularized XOR operation on the nD-EVM  
Theorem 2.3 [2]: Let p and q be two nD-OPPs having ( )

n
EVM p  and 

( )
n

EVM q  as their respective EVMs in nD space, then 

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗ . 

This result allows expressing a formula for computing  

nD-OPPs sections from couplets and vice-versa, by means of their 

corresponding Extreme Vertices Models. These formulae are obtained 

by combining Theorem 2.3 with Theorem 2.1; and Theorem 2.3 with 

Theorem 2.2, respectively: 

Corollary 2.1 [2]:  

( ) ( ) ( )1 1 1 1( ( )) ( ( )) ( ( ))i i i

n i k n i k n i kEVM p EVM S p EVM S pπ π π− − − −Φ = ⊗  

Corollary 2.2 [2]:  

( ) ( ) ( )1 1 1 1( ( )) ( ( )) ( ( ))i i i

n i k n i k n i kEVM S p EVM S p EVM pπ π π− − − −= ⊗ Φ  

Finally, the following corollary can be stated, which correspond 

to a specific situation of the XOR operands. It allows computing the 

union of two nD-OPPs when that specific situation is met.  
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Corollary 2.3 [2]: Let p and q be two disjoint or quasi disjoint  

nD-OPPs having EVMn(p) and EVMn(q) as their respective Extreme 

Vertices Models, then ( ) ( ) ( )n n nEVM p q EVM p EVM q∪ = ⊗  

Table 1. Primitive operations in the nD-EVM. 
Output: An empty nD-EVM. 
Procedure InitEVM( ) 
{ Returns the empty set.                } 

Input: An nD-EVM p 
Output: A Boolean. 
Procedure EndEVM(EVM p) 
{ Returns true if the end of p along  X1-axis has been reached.       } 

Input: An nD-EVM p 
Output: An (n-1)D-EVM embedded in (n-1)D space. 
Procedure ReadHvl(EVM p) 
{ Extracts next (n-1)D couplet perpendicular to X1-axis from p.        } 

Input:  An (n-1)D-EVM hvl embedded in nD space. 
Input/Output: An nD-EVM p 
Procedure PutHvl(EVM hvl, EVM p) 
{ Appends an (n-1)D couplet hvl, which is perpendicular to X1-axis, to p. }  

Input/Output: An (n-1)D-EVM p embedded in (n-1)D space. 
Input: A coordinate coord of type CoordType  
(the chosen type for the vertex coordinates: Integer or Real) 
Procedure SetCoord(EVM p, CoordType coord) 
{ Sets the X1-coordinate to coord on every vertex of the (n-1)D  
   couplet p. For coord=0 it performs the projection 

1
( )pπ .         } 

Input:  Two nD-EVMs p and q. 
Output: An nD-EVM 
Procedure MergeXor(EVM p, EVM q) 
{ Applies the Exclusive OR operation to the vertices of p and q  
   and returns the resulting set.                           } 

Input: An nD-EVM p 
Output: A coordinate of type CoordType (the chosen type for  

the vertex coordinates: Integer or Real) 
Procedure GetCurrentCoord(EVM p) 
{ Returns the common X1-coordinate of the next (n-1)D couplet  
   to be extracted from p.          } 

Input: An nD-EVM p 
Output: A Boolean. 
Procedure IsEmpty(EVM p) 
{ Returns true if p is an empty set.          } 

Input: An nD-EVM p 
Output: An integer 
Procedure GetN(EVM p) 
{ Returns the number of dimensions of the space where p is embedded. } 

Basic Algorithms for the nD-EVM 
According to previous sections the primitive operations shown in 

Table 1 can be defined based in the functions originally presented in 

[2]. Function MergeXor, according to Theorem 2.3, performs an XOR 

between two nD-EVMs, that is, it keeps all vertices belonging to either 

EVMn(p) or EVMn(q) and discards any vertex that belongs to both 

EVMn(p) and EVMn(q). Since the model is sorted, this function consists 

on a simple merging-like algorithm, and therefore, it runs on linear  

time [2].  
 

Input: An (n-1)D-EVM corresponding to section S.  

   An (n-1)D-EVM corresponding to couplet hvl. 

Output: An (n-1)D-EVM. 

Procedure GetSection(EVM S, EVM hvl) 

// Returns the projection of the next section  

// of an nD-OPP whose previous section is S. 

return MergeXor(S, plv) 

end-of-procedure 
Algorithm 1. Computing sections from couplets 

 

Input: An (n-1)D-EVM corresponding to section Si.  

           An (n-1)D-EVM corresponding to section Sj. 

Output: An (n-1)D-EVM. 

Procedure GetHvl(EVM Si, EVM Sj) 

// Returns the projection of the couplet between  

 // consecutive sections Si and Sj. 

return MergeXor(Si, Sj) 

end-of-procedure 
Algorithm 2. Computing couplets from sections 

From the above primitive operations, Algorithms 1 and 2 are de-

rived. The Algorithm 3 computes the sequence of sections of an  

nD-OPP p from its nD-EVM using the previous functions [2]. It se-

quentially reads the projections of the (n-1)D couplets hvl of polytope 

p. Then it computes the sequence of sections using function GetSection. 

Each pair of sections Si and Sj (the previous and next sections about the 

current hvl) is processed by a generic processing procedure (called 

Process), which performs the desired actions upon Si and Sj. 
 

Input: An nD-EVM p. 

Procedure EVM_to_SectionSequence(EVM p) 

EVM hvl     // Current couplet. 

EVM Si, Sj  // Previous and next sections about hvl. 

hvl = InitEVM( ) 

Si = InitEVM( ) 

Sj = InitEVM( )  

hvl = ReadHvl(p) 

while(Not(EndEVM(p))) 

Sj = GetSection(Si, hvl) 

Process(Si, Sj) 

Si = Sj 

hvl = ReadHvl(p)     // Read next couplet. 

end-of-while 

end-of-procedure 
Algorithm 3. Computing the sequence of sections from an nD-OPP p 

represented through the nD-EVM. 

Representing Color 2D Videos through  
3D-OPPs and the EVM 

We start the presentation of our methodologies by establishing 

some conventions: 

• The linearization of a matrix ∆ of size n × m converts the matrix 

into a vector of size n·m by stacking the columns of the matrix ∆ on 

top of one another. Formally: 

( )

( )
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2,1 2,2 2,
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1,1 2,1 ,1 1, 2, ,, ,..., ,..., , ,...,

m

m

n n n m

T

n m m n m

a a a

a a a
Lin Lin

a a a

a a a a a a

 
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 ∆ =
 
  
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�

�
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• Each frame in the animation is labeled as fk and m will be the number 

of such frames. 

• A frame will be seen as a matrix of size xSize × ySize where the  

red-green-blue components of each pixel are integrated into a single 

value [12]. Such value represents the red-green-blue components as 

an integer with 32 bits. Bits 0-7 correspond to the blue value, bits  

8-15 correspond to the green value, bits 16-23 correspond to red 

value and bits 24-31 to the alpha (transparency) value (Figure 2.a).  

A color animation can be represented by a 3D-OPP in the 

following way: 

a) Lin(fk) is computed. It is a vector of size xSize · ySize (Figure 2.b). 

b) Each pixel is associated to a segment whose coordinates along  

X1–axis correspond to its respective coordinates in Lin(fk). Such 

segment is extruded towards the second dimension where the value 

integrating its red-green-blue components now will provide its 

coordinates along X2–axis [12]. 

Let xfk,Lin be the set composed by the rectangles (the extruded 

pixels) of each extruded linearized frame Lin(fk) (see Figure 2.c). It is 

very important to avoid the zero value in the X2 coordinate because a 

pixel could not be extruded and therefore its associated rectangle (a  

2D-OPP) will not be obtained [12]. 

c) Let rectanglei be a rectangle in the set xfk,Lin and npr the number of 

rectangles in that set. Due to all the rectangles in xfk,Lin are quasi 

disjoint 2D-OPPs, the final 2D-OPP can be easily obtained. The 

respective 2D-EVM of the whole 2D linearized frame is obtained by 

computing the regularized union of all the rectangles in xfk,Lin. Then, 

according to Corollary 2.3, we have to apply (all the vertices in a 

rectanglei are extreme):  

2 , 2 ,

1

( ) (rectangle )
npr

k Lin i k Lin

i

EVM F EVM xf
=

= ∈⊗
 

where Fk,Lin is the 2D linearized frame (a 2D-OPP) that represents the 

union of all the rectangles in xfk,Lin (see Figure 2.d). 

d) Let us extrude Fk,Lin into the third dimension, and thus obtain a 3D 

prism prismk whose bases are Fk,Lin and its length is proportional to 

the time the original frame fk is to be displayed. The new third 

dimension will measure and represent the time (see Figure 3). 

e) Let 

1

m

k

k

p prism
=

=∪ , then p is a 3D-OPP that represents the given 

color 2D-animation by linearizing its frames. Due to all the m prisms 

are quasi disjoint 3D-OPPs, then the 3D-EVM for p can be obtained 

by: 
3 3

1

( ) ( )
m

k

k

EVM p EVM prism
=

= ⊗
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Input:   A sequence of frames associated to a color 2D animation. 

         The values xSize and ySize corresponding to the resolution 

of the input animation. 

Output: The 3D-EVM of the polyhedron that codifies frames, in 

linearized mode, in the input animation. 

Procedure  

GenerateLinearized-3D-EVM-movie(Movie animation, xSize, ySize) 

/* The EVM that will store and codify the input animation. */ 

EVM evmMovie    

EVM hvl  // A 2D-couplet to be inserted in the output EVM.  

// Previous and current linearized frames in the animation. 

EVM Fcurr, Fprev   

real t  // The amount of time that the processed frame is displayed. 

/* Position that a pixel in an original frame will occupy in the 

linearized frame.*/ 

int linPosition    

Fprev = InitEVM( ) 

for each frame in animation do 

Frame f = animation.nextFrame( ) 

t = animation.getDisplayingTime( ) 

/* Frame t is linearized and extruded towards the 2D space and 

its 2D-EVM is computed. */ 

linPosition = 0 

Fcurr = InitEVM( ) 

for x = 0 until xSize - 1 do 

for y = 0 until ySize - 1 do 

rgb = getColor(x, y, f) 

/* It is obtained the EVM of the 2D rectangle associated to 

point (x1position, rgb) */.  

EVM rectangle = GetRectangleEVM(linPosition, rgb) 

Fcurr = MergeXor(Fcurr, rectangle) 

linPosition++ 

end-of-for 

end-of-for 
//The Xor, between current and previous 2D frames, is performed. 

hvl = MergeXor(Fcurr, Fprev)  

/* Amount of time t associated to linearized frame Fcurr is 

attached to current 2D couplet. */ 

SetCoord(hvl, t)   

/* A new 2D couplet is attached to the 3D-OPP that codifies, in 

linearized mode, the input animation. */ 

PutHvl(hvl, evmMovie)    

Fprev = Fcurr 

end-of-for 

return evmMovie 

end-of-procedure 
Algorithm 4. Codifying a Color 2D-animation, in linearized way,  

through a 3D-OPP and the EVM. 

The Algorithm 4 shows the procedure for converting a set of 

frames in an animation to a 3D-OPP that codifies them in linearized 

fashion. Such OPP is represented through a 3D-EVM.  

By expressing a given color 2D-animation using linearization of 

frames and its 3D-EVM we have the following characteristics: 

• The sequence of the projections of sections in p corresponds to the 

sequence of 2D linearized frames, i.e., ( )3

3 ,( )k k LinS p Fπ = . 

• Computation of 2D linearized frames: Because p is expressed 

through the EVM then by Corollary 2.2 the 2D-EVM of the 
linearized frame Fk,Lin is computed by  

( ) ( ) ( )( )3

2 , 2 1, 2 3 ( )
k Lin k Lin k

EVM F EVM F EVM pπ−= ⊗ Φ  

The Algorithm 5 applies the above ideas in order to recover 
animation colored 2D frames from a 3D-OPP and displays them. It 

extracts the 2D couplets perpendicular to X3-axis and computes the 

sections that correspond to the extrusion to 2D space of the animation’s 
linearized frames. When the extrusion of a linearized frame is obtained 

then its 1D couplets perpendicular to X2-axis are extracted. Such 1D 

couplets are the segments to draw and their color is assigned according 
to their common X2 coordinate in the 2D frame. A 1D couplet is drawn 

in its correct position through the procedure DisplaySegments. 
The Algorithm 6 corresponds to procedure DisplaySegments. It 

works only for 1D-OPPs. It proceeds to extract the initial and final 

coordinates along X1-axis of each one of the segments in the input  

1D-OPP. Such coordinates are labeled as S1 and S2. In fact, the values 
of S1 and S2 bound a set of adjacent pixels with the same color in the 

linearization of the original frame. The length of the segment is 

computed through S2 – S1. Each one of these pixels needs to be located 
and drawn in their original positions in the frame. There will be 

recovered the 2D coordinates of the first point of the segment to be 

painted. Its coordinates along X1 and X2 axes, in pixels space, are 
respectively inferred through: 

1 1 2 1/ modx s ySize x s ySize= =  
 

where ySize is the height of the original animation. Next, we start to 

move along X2-axis iterating S2–S1 times. In each one of these iterations 
a pixel with coordinates (x1, x2) is drawn and x2 is updated by adding 1 

to it. It could be the case a segment has to be broken because a set of 

contiguous pixels in the linearized frame is in fact two sets of pixels in 
the original frame: the first set occupy the last positions of a column 

while the second is occupying the first positions of the next column (it 

is possible, in fact, each set could be completely occupying their corres-
ponding columns). In Figure 2 an instance of the situation is shown. For 

example, columns 8 and 9 from Figure 2.a are joined, in Figure 2.b, as a 

set of 12 contiguous pixels with the same color. In this situation, du-
ring the drawing of pixels, if the value of x2 is equal to ySize then it is 

updated to x2 = 0 and x1 is updated by adding 1 to it in order to relocate 

the drawing towards the next column starting from its first position. 
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Figure 2. a) A 9 × 9 frame fk in an animation. b) Obtaining Lin(fk). c) Obtaining xfk,Lin. d) Obtaining Fk,Lin and its 2D-EVM (all the extreme vertices are shown). 
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e)

 

X1 

X   = color 2 
X   = time 3 

 
Figure 3. Obtaining, for Figure 2.d, the corresponding prismk and its 3D-EVM (some extreme vertices are shown). 

 

Input:  A 3D-EVM p that represents, in linearized mode, a color 
2D-animation. 

        The values xSize and ySize corresponding to the resolution 

of the animation to be visualized. 
        The graphics context g where the animation is going to be 

displayed. 

Procedure PlayLinearized-3D-EVMmovie(EVM p, xSize, ySize, g) 
EVM hvl    // Current 2D couplet in p. 

// Previous and current 2D linearized frames in the animation. 

EVM Fcurr, Fprev   
Fprev = InitEVM( ) 

hvl = ReadHvl(p) 

while(Not(EndEVM(p))) 
// The next 2D linearized frame is obtained. 

Fcurr = GetSection(Fprev, hvl)   

if (Not(IsEmpty(Fcurr))) then 
int color = 0 

/* hvl_fcurr will be a 1D-OPP. This 1D-couplet will 

contain the segments to be painted. */ 
EVM hvl_fcurr  

while(Not(EndEVM(Fcurr)))   

/* Get the common coordinate of the vertices in 

the next 1D couplet to be extracted.*/ 

color = getCurrentCoord(Fcurr)  

hvl_fcurr = ReadHvl(Fcurr)   
// Couplet hvl_fcurr is an 1D-OPP. 

g.setColor(color) 

/* Segments in hvl_fcurr are painted with the 

current color.*/ 

DisplaySegments(hvl_fcurr, xSize, ySize, g) 

end-of-while  
end-of-if 

Fprev = Fcurr 

hvl = ReadHvl(p)  

end-of-while 

end-of-procedure  
Algorithm 5. Displaying a color 2D-animation represented  

in linearized mode through a 3D-OPP and the EVM. 

Experimental Results 
The described procedures were evaluated through two blue screen 

video sequences which were produced originally at a TV studio of the 
University of Arts in Bremen [3]. Such sequences are AVI XVID 

codified videos (720 × 576, 24 bits color). Both sequences were 

converted, for the experiment, to videos with resolution of  

320 × 240 pixels (standard TV) and 64 colors. The first sequence was 

composed by 146 frames. The 3D-OPP that represented such set of 

selected frames has 535,382 extreme vertices. In another experimented 
case, a second movie sequence was considered. Its time length was 100 

frames. The size of the 3D-EVM corresponding to its codification 

required 1,183,728 extreme vertices. 
As can be noted, in the first referenced sequence there were 

required 535,382 extreme vertices for representing 146 animation 

frames while in the second sequence 1,183,728 extreme vertices were 
required for representing 100 frames through 3D-OPPs. The reason 

behind this behavior was yet identified in [2] and [11]: 

( ) ( ) ( )( )3

2 , 2 1, 2 3 ( )k Lin k Lin kEVM F EVM F EVM pπ−= ⊗ Φ , i.e., the regions at 

couplets 3 ( )
k

pΦ  represent the regions of a previous frame Fk-1,Lin that 

need to be modified in order to update it to the following frame Fk,Lin. In 

other words, a couplet perpendicular to X3-axis 3 ( )
k

pΦ  only stores the 

differences between consecutive 3D frames Fk-1,Lin and Fk,Lin. The way 
the frames change through time has impact over the number of extreme 

vertices in the couplets associated to the 3D-OPP that represents the 
animation. The first animation contains a girl who is sat and working 

with a computer. As seen in Figure 4, the girl, along time, is practically 

immobile. Hence, there is a lot of redundancy between all frames in the 
animation. Therefore, only minimal differences are stored in the OPPs 

couplets, except the first and last couplets, whose visualization coincide 

with the first and last frames in the original animation. On the other 
hand, the second animation is a sequence where the girl is jumping and 

dancing along the screen from right to left (See Figure 5). In this case 

There is a level of redundancy that is minor than the one found in the 
first animation because there are more noticeable changes between 

consecutive frames. 
 

Input:   A 1D-EVM p that contains a set of segments which were 

codified through a linearized 2D frame.  
The values xSize and ySize corresponding to the resolution 

of the original animation. 

The graphics context g where the rectangles in p are going 
to be displayed. 

Output:  True if and only if the number of dimensions of p is 1. 

False if and only if the number of dimensions of p is not 1, 
hence, elements of p were not displayed. 

Procedure DisplaySegments(EVM p, xSize, ySize, g) 

if (p.getN( ) ≠ 1) then return False 

int s_1, s_2   // Initial and final points of a segment in p. 

int sLength   // The length of a segment in p. 

int x1, x2      // Coordinates along X1-axis of a pixel to be painted. 

while(Not(EndEVM(p)))  

s_1 = getCurrentCoord(p) 

ReadHvl(p) 
s_2 = getCurrentCoord(p) 

ReadHvl(p) 

sLength = s_2 - s_1 
x1 = floor(s_1 / ySize) 

x2 = s_1 mod ySize 

for i = 0 until sLength - 1 do 
g.fillRect(x, y, 1, 1) 

y++ 

if (y == ySize) then 
    y = 0 

    x++ 

end-of-if    

end-of-for 

end-of-while 

return True 

end-of-procedure 
Algorithm 6. Displaying the segments that compose a 1D-OPP expressed 

through the EVM. Such segments are associated to a linearized frame. 
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According to this experiment it can be concluded that the EVM’s 
conciseness, respect to the representation of animations in linearized 

way, depends of the degree of redundancy between the frames 

associated to such animations. This valuable property, identified 
previously in [2] and [11] where the EVM was also used for managing 

video sequences, is preserved in the present methodologies. 

Consider the animation presented in Figure 6. Such video 
sequence corresponds to the visualization of blood flow through laser 

speckle flowgraphy [7]. It is composed by eleven frames whose 

resolution is 601 × 545. The animation is given in grayscale with 256 
levels. In Figure 1 there were presented some frames of a sequence that 

presents a coronagraph image of a radiation storm [5]. Such animation 

contained seven frames with resolution 256 × 256 and 256 colors. Both 
animations share the characteristic that the value of a pixel in a frame is 

distinct from the value of that same pixel in the next frame. Hence, the 

level of redundancy to expect is very low or possibly inexistent. As 
commented previously, because of the accuracy required when these 

sequences are analyzed, any kind of threshold, which could elevate the 

redundancy degree, is prohibited. For example, in the animation from 
Figure 6 it could be required to identify micro-vessels in a given region 

of a patient’s tissue. This kind of vessels could be detected in regions 

whose width is just one pixel. Hence, some threshold, in order to reduce 
the complexity of the images and for increasing the level of redundancy 

between them, could be not appropriate because vital information could 

be omitted. The sequence from Figure 6 required, according to our 
method, 6,708,552 extreme vertices for its representation through the  

3D-EVM. The EVM associated to the 3D-OPP that describes the 

animation from Figure 1 required 1,089,040 extreme vertices. At this 
point is important to mention that the obtained representations, for 

videos from Figures 1, 4, 5 and 6 are unique and accurate because 

methods for elevating redundancy were not applied.  
Finally, the conciseness of the final representations can be 

increased by taking in account some of the known methods for file 

compression. In our case we compressed the final files using GZIP 
standard [13]. Animations from Figures 1, 4, 5 and 6 have associated 

final files of sizes 2.8 MB (256 × 256, 256 colors), 1.43 MB  

(320 × 240, 64 colors), 3.26 MB (320 × 240, 64 colors), and 20.6 MB 

(601 × 545, 256 gray levels) respectively.  

Conclusions and Future Work 
This work has been possible because of the Extreme Vertices 

Model in the n-Dimensional Space (nD-EVM). The Extreme Vertices 

Model allows representing nD-OPPs by means of a single subset of 

their vertices: the Extreme Vertices. The description given here for the 
nD-EVM is in fact a very brief description of the capabilities of the 

model because there have been developed simple and robust algo-

rithms, besides the ones presented in this work, for performing the most 
usual and demanding tasks on polytopes modeling such as closed and 

regularized Boolean operations, boundary extraction, set membership 

classification operations, and measure operations (see [2] and [9] for 
more details). In this aspect we mention the development of other “real 

world” practical applications under the context of the nD-EVM, which 

are widely discussed and modeled in [9]. These practical applications, 
through we have showed the versatility of application of the nD-EVM, 

consider: (1) a method for comparing images oriented to the evaluation 

of volcanoes’ activity; (2) the way the nD-EVM enhances Image Based 
Reasoning; (3) the manipulation and extraction of information from 3D 

datasets (see also [10]), and finally, (4) an application to collision 

detection between 3D objects through the nD-EVM.  
This work has presented some results obtained from a proposed 

method for representing video sequences by considering 3D-OPPs 

embedded in 3D Time-Color Space and finally expressing such OPPs 
through the 3D-EVM. Hence, the next logical step considers the 

application of the algorithms in the nD-EVM in order to extract useful 

information from the represented animations. We will study how a 
geometrical and/or topological interrogation to an EVM can share 

information and knowledge about the sequence that it represents. 

   
Frame 1 Frame 80 Frame 146 

Figure 4. Three main frames taken from the first animation used for conversion 
to the 3D-EVM: There were required 535,382 extreme vertices for encoding 146 

frames (original sequence taken from [3]). 

 

   
Frame 1 Frame 50 Frame 100 

Figure 5. Three main frames taken from the second animation used for 
conversion to the 3D-EVM: There were required 1,183,728 extreme vertices for 

encoding 100 frames (original sequence taken from [3]). 
 
 
 

   
Frame 2 Frame 6 Frame 10 

Figure 6. Three main frames taken from an 11 frames animation obtained 
through laser speckle flowgraphy. This animation shares the visualization of 

blood flow in a given region (original sequence taken from [7]).  
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