
Orthogonal Polyhedra in 3D Time-Color Space as a Geometric

Model for Representation of Video Sequences with Low

or Inexistent Redundancy between Frames

Ricardo Pérez-Aguila; Universidad Tecnológica de la Mixteca (UTM), Carretera Huajuapan-Acatlima Km 2.5;
Huajuapan de León, Oaxaca/México: 69000

Abstract
Several video compression methods have in common their

conciseness depends of the degree of redundancy between the frames

associated to the sequences they describe. Cartoon animations are a

good example of animations with an elevated redundancy and from

which an elevated compression is expected. However, scientific

sequences provide us with a huge set of examples where the degree of

redundancy is very low or inexistent. Because of the accuracy required

when these sequences are analyzed, any kind of threshold, which could

elevate the redundancy degree, is prohibited. In this work, a proposed

solution to the addressed problem considers the linearization of each

frame. That is, a frame can be considered as a matrix but by stacking

its columns on top of one another a vector is obtained. In this way each

pixel can be referenced by only one coordinate in the vector. Starting

from these considerations a geometric representation is built: A video

sequence will be associated to a unique 3D Orthogonal

Pseudo-Polyhedron (3D-OPP). Such 3D-OPP is embedded in a 3D

Time-Color Space where X1-axis corresponds to the position of pixels

in the linearization, the second spatial dimension (X2-axis) is associated

to the color value of a pixel, and finally, X3-axis describes the

displaying time of frames in the original animation. Such 3D-OPP can

be compressed, manipulated, and displayed in screen by expressing it

according to the Extreme Vertices Model in the n-Dimensional Space

(nD-EVM). The nD-EVM shares the representation of n-Dimensional

Orthogonal Pseudo-Polytopes (nD-OPPs) by considering only a subset

of their vertices.

Introduction and Problem Statement
The Extreme Vertices Model (3D-EVM) was originally presented,

and widely described in [1], for modeling 2-manifold Orthogonal

Polyhedra and later considering both Orthogonal Polyhedra (3D-OPs)

and Pseudo-Polyhedra (3D-OPPs) [2]. This model has enabled the

development of simple and robust algorithms for performing the most

usual and demanding tasks on solid modeling, such as closed and

regularized Boolean operations, solid splitting, set membership

classification operations and measure operations on 3D-OPPs. It is

natural to ask if the EVM can be extended for modeling n-Dimensional

Orthogonal Pseudo-Polytopes (nD-OPPs). In this sense, some

experiments were made, in [8], where the validity of the model was

assumed true in order to represent 4D and 5D-OPPs. Finally, in [9] was

formally proved that the nD-EVM is a complete scheme for the

representation of nD-OPPs. The meaning of complete scheme was

based in Requicha's set of formal criterions that every scheme must

have rigorously defined: Domain, Completeness, Uniqueness and

Validity. Although the EVM of an nD-OPP has been defined as a

subset of the nD-OPPs vertices, there is much more information about

the polytope hidden within this subset of vertices. In the following

sections there will be described basic procedures and algorithms in

order to obtain some of this information.

It is well known that several video compression methods were

invented to be able to effectively store video data on common digital

media. Their conciseness depends of the degree of redundancy between

the frames associated to the sequences they describe. As noted in [4],

cartoon animations are a good example of animations with an elevated

redundancy where these compression methods can be applied expecting

almost an optimal performance. For example, Koloros & Zára [4]

separate in first place the original animation frame into a set of regions

using unsupervised image segmentation techniques. Then they use

motion estimation in order to register parts of the background to stitch

and store background layer as one big image. Shapes of homogeneous

color regions in the foreground layer are converted from raster to vector

representation and encoded separately. To search for frame duplicities

and to store new frames they use a pool of already stored frames [4].

Another example is given by the work of Kwatra and Rossignac [6]. In

their approach each region in a frame is first represented as a 3D

volume by sweeping its 2D shape through the time. Then their

Edgebreaker compression scheme is used to encode volume geometry.

The outputs given by the methods provided by these authors ([4] & [6])

are vectorized video sequences: animations described in terms of

geometrical elements (polygons, lines, volumes, etc.) whose

visualization on screen depends on the temporal dimension. However,

these authors did not address the problem of vectorization for complex

color and gray scale image sequences. A contribution for addressing the

last comment was given in [11]. In such case, each frame in a color

video is initially represented as a set of orthogonal polygons whose

displaying time depends on the temporal dimension. Hence, a

vectorized 2D color video sequence is expressed as a 4D Orthogonal

Pseudo-Polytope (4D-OPP) whose first two dimensions corresponds to

pixels’ original coordinates in a frame, the third dimension is associated

to the color to apply to such pixels, and finally the fourth dimension

describes time. The size and compression of such 4D-OPP depend on

the redundancy degree between the frames. As can be seen, the above

methods are sustained by the hypothesis the sequences represented

contain a high level of redundancy. Obviously, it can be concluded that

by more level of redundancy more conciseness from these procedures

can be expected.

Frame 1 Frame 3 Frame 5 Frame 7

Figure 1. A sequence of frames that presents a coronagraph image
of a radiation storm (taken from [5]).

An interesting situation comes from the fact that scientific

sequences provide us with a huge set of examples where the degree of

redundancy between frames is very low or inexistent. Consider for

example the sequence presented in Figure 1. Such sequence describes a

coronagraph image of a radiation storm which took place in January 20,

2005 [5]. The main characteristic in this sequence shows that the value

of a pixel (inside the main circle) in a frame is distinct from the value of

that same pixel in the next frame. Because of the accuracy required

when these sequences are analyzed, any kind of threshold, which could

elevate the redundancy degree, is prohibited.

It is common to think of a frame by considering its original two

spatial dimensions for each one of its pixels. A possible solution to the

addressed problem could consider the linearization of each frame. That

is, a frame can be considered as a matrix but by stacking its columns on

top of one another a vector is obtained. In this way each pixel can be

referenced by only one coordinate in such vector. Hence, we deal with

only one spatial dimension instead of the original two dimensions.

Obviously, there is a way to recover the original position of a pixel

given the original width and height of its frame. It can be observed that

a 3D-OPP, embedded in what we call 3D Time-Color Space, can

represent an animation: X1-axis will correspond to the position of pixels

in the linearization, X2-axis will refer to their red-green-blue integrated

components, and X3-axis will be associated to time. The compression,

manipulation, and displaying in screen of the represented sequences is

performed through the 3D-EVM. The proposed methodologies will be

described in the third main section.

CGIV 2008 and MCS’08 Final Program and Proceedings 167

The Extreme Vertices Model
in the n-Dimensional Space (nD-EVM)
Preliminary Background:
n-Dimensional Orthogonal Pseudo-Polytopes

Definition 2.1: A Singular n-Dimensional Hyper-Box in
n� is the

continuous function : [0,1] [0,1]

()

n n n

n

I

x I x x

→

=∼

Definition 2.2: For all i, 1 ≤ i ≤ n, the two singular (n-1)D

hyper-boxes
(,0)

n

iI and
(,1)

n

iI are defined as follows: If 1[0,1]n
x

−∈ then

•
(,0) 1 1 1 1 1 1() (,..., , 0, ,...,) (,..., ,0, ,...,)n n

i i i n i i n
I x I x x x x x x x x− − − −= =

•
(,1) 1 1 1 1 1 1() (,..., ,1, ,...,) (,..., ,1, ,...,)n n

i i i n i i n
I x I x x x x x x x x− − − −= =

Definition 2.3: In a general singular nD hyper-box c the (i,α)-cell is

defined as
(,) (,)

n

i i
c c Iα α= �

Definition 2.4: The orientation of a cell
(,)

n

i
c I α� is given by (1) iα +− .

Definition 2.5: An (n-1)D oriented cell is given by the

scalar-function product
(,)(1)i n

i
c I

α
α

+− ⋅ �

Definition 2.6: A formal linear combination of singular general kD

hyper-boxes, 1 ≤ k ≤ n, for a closed set A is called a k-chain.

Definition 2.7 [14]: Given a singular nD hyper-box In the

(n-1)-chain, called the boundary of In, is given by

(,)

1 0,1

() (1)
n

n i n

i

i

I I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑

Definition 2.8 [14]: Given a singular general nD hyper-box c the

(n-1)-chain, called the boundary of c, is defined by

(,)

1 0,1

() (1)
n

i n

i

i

c c I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑ �

Definition 2.9 [14]: The boundary of an n-chain
ic∑ , where each ci

is a singular general nD hyper-box, is given by () ()i ic c∂ = ∂∑ ∑

Definition 2.10: A collection c1, c2, …, ck, 1 ≤ k ≤ 2n, of general singu-

lar nD hyper-boxes is a combination of nD hyper-boxes if and only if

�

()()

1

([0,1]) (0,...,0)

, , , 1 , ([0,1]) ([0,1])

k
n

n

n n

i j

c

i j i j i j k c c

α
α =

 
= ∧ 

 

 ∀ ≠ ≤ ≤ ≠ 

∩

In the above definition the first part of the conjunction establishes

that the intersection between all the nD general singular hyper-boxes is

the origin, while the second part establishes that there are not

overlapping nD hyper-boxes.

Definition 2.11: An n-Dimensional Orthogonal Pseudo-Polytope p, or

just an nD-OPP p, will be an n-chain composed by nD hyper-boxes

arranged in such way that by selecting a vertex, in any of these

hyper-boxes, we have that such vertex describes a combination of nD

hyper-boxes (Definition 2.10) composed up to 2n hyper-boxes.

The nD-EVM: Foundations
Definition 2.12: Let c be a combination of hyper-boxes in the

n-Dimensional space. An Odd Edge will be an edge with an odd

number of incident hyper-boxes of c.

Definition 2.13: A brink or extended edge is the maximal uninterrupted

segment, built out of a sequence of collinear and contiguous odd edges

of an nD-OPP.

Definition 2.14: The Extreme Vertices of an nD-OPP p are the ending

vertices of all the brinks in p. EV(p) will denote to the set of Extreme

Vertices of p.

Let Q be a finite set of points in 3� . In [2] was defined the

ABC-sorted set of Q as the set resulting from sorting Q according to

coordinate A, then to coordinate B, and then to coordinate C. For

instance, a set Q can be ABC-sorted is six different ways: X1X2X3,

X1X3X2, X2X1X3, X2X3X1, X3X1X2 and X3X2X1. Now, let p be a

3D-OPP. According to [2] the Extreme Vertices Model of p, EVM(p),

denotes to the ABC-sorted set of the extreme vertices of p. Then

EVM(p) = EV(p) except by the fact that EV(p) is not necessarily sorted.

In this work it should be assumed that the coordinates of extreme

vertices in the Extreme Vertices Model of an nD-OPP p, EVMn(p) are

sorted according to one fixed ordering taken from the possible n!

permutations.

Definition 2.15: Let p be an nD-OPP. The Extreme Vertices Model of

p, denoted by EVMn(p), is defined as the model as only stores to all the

extreme vertices of p.

Sections and Slices of nD-OPPs
Definition 2.16: Let p be an nD-OPP. A kD couplet of p, 1<k<n, is the

maximal set of kD cells of p that lies in a kD space, such that a kD cell

e0 belongs to a kD extended hypervolume if and only if e0 belongs to an

(n-1)D cell present in ∂(p).

Definition 2.17: The Projection Operator for (n-1)D cells, points, and

set of points is respectively defined as follows:

• Let
(,) 1(()) (,..,)n

i nc I x x xα = be an (n-1)D cell embedded in the nD

space. ()(,)(())
n

j ic I xαπ will denote the projection of the cell

(,)(())n

ic I xα
 onto an (n-1)D space embedded in nD space whose

supporting hyperplane is perpendicular to Xj-axis:

()(,) 1
ˆ(()) (,..., ,...,)n

j i j nc I x x x xαπ =

• Let
1(,...,)nv x x= a point in n� . The projection of v in the (n-1)D

space, denoted by ()j vπ , is given by
1

ˆ() (,..., ,...,)j j nv x x xπ =

• Let Q be a set of points in n� . The projection of the points in Q,

denoted by ()j Qπ , is defined as the set of points in 1n−� such that

{ }1() : (),n n

j jQ p p x x Qπ π−= ∈ = ∈ ⊂� �

Where ˆ
jx is the coordinate corresponding to Xj-axis to be suppressed.

Definition 2.18: Consider an nD-OPP p:

• Let
inp be the number of distinct coordinates present in the vertices

of p along Xi-axis, 1 ≤ i ≤ n.

• Let ()i

k pΦ be the k-th (n-1)D couplet of p which is perpendicular to

Xi-axis, 1 ≤ k ≤ npi.

Definition 2.19: A Section is the (n-1)D-OPP, n>1, resulting from the

intersection between an nD-OPP p and a (n-1)D hyperplane

perpendicular to the coordinate Xi -axis, 1 ≤ i ≤ n, which not coincide

with any (n-1)D-couplet of p. A section will be called external or

internal section of p if it is empty or not, respectively. ()i

kS p will refer

to the k-th section of p between ()i

k pΦ and
1()i

k p+Φ , 1 ≤ k < npi.

Computing Couplets and Sections
Theorem 2.1 [9]: The projection of the set of (n-1)D-couplets,

()()i

i k
pπ Φ , of an nD-OPP p, can be obtained by computing the

regularized XOR (⊗) between the projections of its previous

()1()i

i kS pπ −
 and next ()()

i

i kS pπ sections, i.e.,

() () ()1() () * () , [1,]i i i

i k i k i k ip S p S p k npπ π π−Φ = ⊗ ∀ ∈

Theorem 2.2 [9]: The projection of any section, ()()i

i kS pπ , of an

nD-OPP p, can be obtained by computing the regularized XOR between

the projection of its previous section, ()1()i

i kS pπ −
, and the projection

of its previous couplet ()()i

i k pπ Φ .

The Regularized XOR operation on the nD-EVM
Theorem 2.3 [2]: Let p and q be two nD-OPPs having ()

n
EVM p and

()
n

EVM q as their respective EVMs in nD space, then

(*) () ()n n nEVM p q EVM p EVM q⊗ = ⊗ .

This result allows expressing a formula for computing

nD-OPPs sections from couplets and vice-versa, by means of their

corresponding Extreme Vertices Models. These formulae are obtained

by combining Theorem 2.3 with Theorem 2.1; and Theorem 2.3 with

Theorem 2.2, respectively:

Corollary 2.1 [2]:

() () ()1 1 1 1(()) (()) (())i i i

n i k n i k n i kEVM p EVM S p EVM S pπ π π− − − −Φ = ⊗

Corollary 2.2 [2]:

() () ()1 1 1 1(()) (()) (())i i i

n i k n i k n i kEVM S p EVM S p EVM pπ π π− − − −= ⊗ Φ

Finally, the following corollary can be stated, which correspond

to a specific situation of the XOR operands. It allows computing the

union of two nD-OPPs when that specific situation is met.

168 ©2008 Society for Imaging Science and Technology

Corollary 2.3 [2]: Let p and q be two disjoint or quasi disjoint

nD-OPPs having EVMn(p) and EVMn(q) as their respective Extreme

Vertices Models, then () () ()n n nEVM p q EVM p EVM q∪ = ⊗

Table 1. Primitive operations in the nD-EVM.
Output: An empty nD-EVM.
Procedure InitEVM()
{ Returns the empty set. }

Input: An nD-EVM p
Output: A Boolean.
Procedure EndEVM(EVM p)
{ Returns true if the end of p along X1-axis has been reached. }

Input: An nD-EVM p
Output: An (n-1)D-EVM embedded in (n-1)D space.
Procedure ReadHvl(EVM p)
{ Extracts next (n-1)D couplet perpendicular to X1-axis from p. }

Input: An (n-1)D-EVM hvl embedded in nD space.
Input/Output: An nD-EVM p
Procedure PutHvl(EVM hvl, EVM p)
{ Appends an (n-1)D couplet hvl, which is perpendicular to X1-axis, to p. }

Input/Output: An (n-1)D-EVM p embedded in (n-1)D space.
Input: A coordinate coord of type CoordType
(the chosen type for the vertex coordinates: Integer or Real)
Procedure SetCoord(EVM p, CoordType coord)
{ Sets the X1-coordinate to coord on every vertex of the (n-1)D
 couplet p. For coord=0 it performs the projection

1
()pπ . }

Input: Two nD-EVMs p and q.
Output: An nD-EVM
Procedure MergeXor(EVM p, EVM q)
{ Applies the Exclusive OR operation to the vertices of p and q
 and returns the resulting set. }

Input: An nD-EVM p
Output: A coordinate of type CoordType (the chosen type for

the vertex coordinates: Integer or Real)
Procedure GetCurrentCoord(EVM p)
{ Returns the common X1-coordinate of the next (n-1)D couplet
 to be extracted from p. }

Input: An nD-EVM p
Output: A Boolean.
Procedure IsEmpty(EVM p)
{ Returns true if p is an empty set. }

Input: An nD-EVM p
Output: An integer
Procedure GetN(EVM p)
{ Returns the number of dimensions of the space where p is embedded. }

Basic Algorithms for the nD-EVM
According to previous sections the primitive operations shown in

Table 1 can be defined based in the functions originally presented in

[2]. Function MergeXor, according to Theorem 2.3, performs an XOR

between two nD-EVMs, that is, it keeps all vertices belonging to either

EVMn(p) or EVMn(q) and discards any vertex that belongs to both

EVMn(p) and EVMn(q). Since the model is sorted, this function consists

on a simple merging-like algorithm, and therefore, it runs on linear

time [2].

Input: An (n-1)D-EVM corresponding to section S.

 An (n-1)D-EVM corresponding to couplet hvl.

Output: An (n-1)D-EVM.

Procedure GetSection(EVM S, EVM hvl)

// Returns the projection of the next section

// of an nD-OPP whose previous section is S.

return MergeXor(S, plv)

end-of-procedure
Algorithm 1. Computing sections from couplets

Input: An (n-1)D-EVM corresponding to section Si.

 An (n-1)D-EVM corresponding to section Sj.

Output: An (n-1)D-EVM.

Procedure GetHvl(EVM Si, EVM Sj)

// Returns the projection of the couplet between

 // consecutive sections Si and Sj.

return MergeXor(Si, Sj)

end-of-procedure
Algorithm 2. Computing couplets from sections

From the above primitive operations, Algorithms 1 and 2 are de-

rived. The Algorithm 3 computes the sequence of sections of an

nD-OPP p from its nD-EVM using the previous functions [2]. It se-

quentially reads the projections of the (n-1)D couplets hvl of polytope

p. Then it computes the sequence of sections using function GetSection.

Each pair of sections Si and Sj (the previous and next sections about the

current hvl) is processed by a generic processing procedure (called

Process), which performs the desired actions upon Si and Sj.

Input: An nD-EVM p.

Procedure EVM_to_SectionSequence(EVM p)

EVM hvl // Current couplet.

EVM Si, Sj // Previous and next sections about hvl.

hvl = InitEVM()

Si = InitEVM()

Sj = InitEVM()

hvl = ReadHvl(p)

while(Not(EndEVM(p)))

Sj = GetSection(Si, hvl)

Process(Si, Sj)

Si = Sj

hvl = ReadHvl(p) // Read next couplet.

end-of-while

end-of-procedure
Algorithm 3. Computing the sequence of sections from an nD-OPP p

represented through the nD-EVM.

Representing Color 2D Videos through
3D-OPPs and the EVM

We start the presentation of our methodologies by establishing

some conventions:

• The linearization of a matrix ∆ of size n × m converts the matrix

into a vector of size n·m by stacking the columns of the matrix ∆ on

top of one another. Formally:

()

()

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1,1 2,1 ,1 1, 2, ,, ,..., ,..., , ,...,

m

m

n n n m

T

n m m n m

a a a

a a a
Lin Lin

a a a

a a a a a a

 
 
 ∆ =
 
  
 

=

�

�

� � � �

�

• Each frame in the animation is labeled as fk and m will be the number

of such frames.

• A frame will be seen as a matrix of size xSize × ySize where the

red-green-blue components of each pixel are integrated into a single

value [12]. Such value represents the red-green-blue components as

an integer with 32 bits. Bits 0-7 correspond to the blue value, bits

8-15 correspond to the green value, bits 16-23 correspond to red

value and bits 24-31 to the alpha (transparency) value (Figure 2.a).

A color animation can be represented by a 3D-OPP in the

following way:

a) Lin(fk) is computed. It is a vector of size xSize · ySize (Figure 2.b).

b) Each pixel is associated to a segment whose coordinates along

X1–axis correspond to its respective coordinates in Lin(fk). Such

segment is extruded towards the second dimension where the value

integrating its red-green-blue components now will provide its

coordinates along X2–axis [12].

Let xfk,Lin be the set composed by the rectangles (the extruded

pixels) of each extruded linearized frame Lin(fk) (see Figure 2.c). It is

very important to avoid the zero value in the X2 coordinate because a

pixel could not be extruded and therefore its associated rectangle (a

2D-OPP) will not be obtained [12].

c) Let rectanglei be a rectangle in the set xfk,Lin and npr the number of

rectangles in that set. Due to all the rectangles in xfk,Lin are quasi

disjoint 2D-OPPs, the final 2D-OPP can be easily obtained. The

respective 2D-EVM of the whole 2D linearized frame is obtained by

computing the regularized union of all the rectangles in xfk,Lin. Then,

according to Corollary 2.3, we have to apply (all the vertices in a

rectanglei are extreme):

2 , 2 ,

1

() (rectangle)
npr

k Lin i k Lin

i

EVM F EVM xf
=

= ∈⊗

where Fk,Lin is the 2D linearized frame (a 2D-OPP) that represents the

union of all the rectangles in xfk,Lin (see Figure 2.d).

d) Let us extrude Fk,Lin into the third dimension, and thus obtain a 3D

prism prismk whose bases are Fk,Lin and its length is proportional to

the time the original frame fk is to be displayed. The new third

dimension will measure and represent the time (see Figure 3).

e) Let

1

m

k

k

p prism
=

=∪ , then p is a 3D-OPP that represents the given

color 2D-animation by linearizing its frames. Due to all the m prisms

are quasi disjoint 3D-OPPs, then the 3D-EVM for p can be obtained

by:
3 3

1

() ()
m

k

k

EVM p EVM prism
=

= ⊗

CGIV 2008 and MCS’08 Final Program and Proceedings 169

Input: A sequence of frames associated to a color 2D animation.

 The values xSize and ySize corresponding to the resolution

of the input animation.

Output: The 3D-EVM of the polyhedron that codifies frames, in

linearized mode, in the input animation.

Procedure

GenerateLinearized-3D-EVM-movie(Movie animation, xSize, ySize)

/* The EVM that will store and codify the input animation. */

EVM evmMovie

EVM hvl // A 2D-couplet to be inserted in the output EVM.

// Previous and current linearized frames in the animation.

EVM Fcurr, Fprev

real t // The amount of time that the processed frame is displayed.

/* Position that a pixel in an original frame will occupy in the

linearized frame.*/

int linPosition

Fprev = InitEVM()

for each frame in animation do

Frame f = animation.nextFrame()

t = animation.getDisplayingTime()

/* Frame t is linearized and extruded towards the 2D space and

its 2D-EVM is computed. */

linPosition = 0

Fcurr = InitEVM()

for x = 0 until xSize - 1 do

for y = 0 until ySize - 1 do

rgb = getColor(x, y, f)

/* It is obtained the EVM of the 2D rectangle associated to

point (x1position, rgb) */.

EVM rectangle = GetRectangleEVM(linPosition, rgb)

Fcurr = MergeXor(Fcurr, rectangle)

linPosition++

end-of-for

end-of-for
//The Xor, between current and previous 2D frames, is performed.

hvl = MergeXor(Fcurr, Fprev)

/* Amount of time t associated to linearized frame Fcurr is

attached to current 2D couplet. */

SetCoord(hvl, t)

/* A new 2D couplet is attached to the 3D-OPP that codifies, in

linearized mode, the input animation. */

PutHvl(hvl, evmMovie)

Fprev = Fcurr

end-of-for

return evmMovie

end-of-procedure
Algorithm 4. Codifying a Color 2D-animation, in linearized way,

through a 3D-OPP and the EVM.

The Algorithm 4 shows the procedure for converting a set of

frames in an animation to a 3D-OPP that codifies them in linearized

fashion. Such OPP is represented through a 3D-EVM.

By expressing a given color 2D-animation using linearization of

frames and its 3D-EVM we have the following characteristics:

• The sequence of the projections of sections in p corresponds to the

sequence of 2D linearized frames, i.e., ()3

3 ,()k k LinS p Fπ = .

• Computation of 2D linearized frames: Because p is expressed

through the EVM then by Corollary 2.2 the 2D-EVM of the
linearized frame Fk,Lin is computed by

() () ()()3

2 , 2 1, 2 3 ()
k Lin k Lin k

EVM F EVM F EVM pπ−= ⊗ Φ

The Algorithm 5 applies the above ideas in order to recover
animation colored 2D frames from a 3D-OPP and displays them. It

extracts the 2D couplets perpendicular to X3-axis and computes the

sections that correspond to the extrusion to 2D space of the animation’s
linearized frames. When the extrusion of a linearized frame is obtained

then its 1D couplets perpendicular to X2-axis are extracted. Such 1D

couplets are the segments to draw and their color is assigned according
to their common X2 coordinate in the 2D frame. A 1D couplet is drawn

in its correct position through the procedure DisplaySegments.
The Algorithm 6 corresponds to procedure DisplaySegments. It

works only for 1D-OPPs. It proceeds to extract the initial and final

coordinates along X1-axis of each one of the segments in the input

1D-OPP. Such coordinates are labeled as S1 and S2. In fact, the values
of S1 and S2 bound a set of adjacent pixels with the same color in the

linearization of the original frame. The length of the segment is

computed through S2 – S1. Each one of these pixels needs to be located
and drawn in their original positions in the frame. There will be

recovered the 2D coordinates of the first point of the segment to be

painted. Its coordinates along X1 and X2 axes, in pixels space, are
respectively inferred through:

1 1 2 1/ modx s ySize x s ySize= =  

where ySize is the height of the original animation. Next, we start to

move along X2-axis iterating S2–S1 times. In each one of these iterations
a pixel with coordinates (x1, x2) is drawn and x2 is updated by adding 1

to it. It could be the case a segment has to be broken because a set of

contiguous pixels in the linearized frame is in fact two sets of pixels in
the original frame: the first set occupy the last positions of a column

while the second is occupying the first positions of the next column (it

is possible, in fact, each set could be completely occupying their corres-
ponding columns). In Figure 2 an instance of the situation is shown. For

example, columns 8 and 9 from Figure 2.a are joined, in Figure 2.b, as a

set of 12 contiguous pixels with the same color. In this situation, du-
ring the drawing of pixels, if the value of x2 is equal to ySize then it is

updated to x2 = 0 and x1 is updated by adding 1 to it in order to relocate

the drawing towards the next column starting from its first position.

a)

9 rows

9 columns b) C
ol

um
n

1

C
ol

um
n

2

C
ol

um
n

3

C
ol

um
n

4

C
ol

um
n

5

C
ol

um
n

6

C
ol

um
n

7

C
ol

um
n

8

C
ol

um
n

9

X1

c)

X1

X = color 2

d)

X 1

X = color 2

Figure 2. a) A 9 × 9 frame fk in an animation. b) Obtaining Lin(fk). c) Obtaining xfk,Lin. d) Obtaining Fk,Lin and its 2D-EVM (all the extreme vertices are shown).

170 ©2008 Society for Imaging Science and Technology

e)

X1

X = color 2
X = time 3

Figure 3. Obtaining, for Figure 2.d, the corresponding prismk and its 3D-EVM (some extreme vertices are shown).

Input: A 3D-EVM p that represents, in linearized mode, a color
2D-animation.

 The values xSize and ySize corresponding to the resolution

of the animation to be visualized.
 The graphics context g where the animation is going to be

displayed.

Procedure PlayLinearized-3D-EVMmovie(EVM p, xSize, ySize, g)
EVM hvl // Current 2D couplet in p.

// Previous and current 2D linearized frames in the animation.

EVM Fcurr, Fprev
Fprev = InitEVM()

hvl = ReadHvl(p)

while(Not(EndEVM(p)))
// The next 2D linearized frame is obtained.

Fcurr = GetSection(Fprev, hvl)

if (Not(IsEmpty(Fcurr))) then
int color = 0

/* hvl_fcurr will be a 1D-OPP. This 1D-couplet will

contain the segments to be painted. */
EVM hvl_fcurr

while(Not(EndEVM(Fcurr)))

/* Get the common coordinate of the vertices in

the next 1D couplet to be extracted.*/

color = getCurrentCoord(Fcurr)

hvl_fcurr = ReadHvl(Fcurr)
// Couplet hvl_fcurr is an 1D-OPP.

g.setColor(color)

/* Segments in hvl_fcurr are painted with the

current color.*/

DisplaySegments(hvl_fcurr, xSize, ySize, g)

end-of-while
end-of-if

Fprev = Fcurr

hvl = ReadHvl(p)

end-of-while

end-of-procedure
Algorithm 5. Displaying a color 2D-animation represented

in linearized mode through a 3D-OPP and the EVM.

Experimental Results
The described procedures were evaluated through two blue screen

video sequences which were produced originally at a TV studio of the
University of Arts in Bremen [3]. Such sequences are AVI XVID

codified videos (720 × 576, 24 bits color). Both sequences were

converted, for the experiment, to videos with resolution of

320 × 240 pixels (standard TV) and 64 colors. The first sequence was

composed by 146 frames. The 3D-OPP that represented such set of

selected frames has 535,382 extreme vertices. In another experimented
case, a second movie sequence was considered. Its time length was 100

frames. The size of the 3D-EVM corresponding to its codification

required 1,183,728 extreme vertices.
As can be noted, in the first referenced sequence there were

required 535,382 extreme vertices for representing 146 animation

frames while in the second sequence 1,183,728 extreme vertices were
required for representing 100 frames through 3D-OPPs. The reason

behind this behavior was yet identified in [2] and [11]:

() () ()()3

2 , 2 1, 2 3 ()k Lin k Lin kEVM F EVM F EVM pπ−= ⊗ Φ , i.e., the regions at

couplets 3 ()
k

pΦ represent the regions of a previous frame Fk-1,Lin that

need to be modified in order to update it to the following frame Fk,Lin. In

other words, a couplet perpendicular to X3-axis 3 ()
k

pΦ only stores the

differences between consecutive 3D frames Fk-1,Lin and Fk,Lin. The way
the frames change through time has impact over the number of extreme

vertices in the couplets associated to the 3D-OPP that represents the
animation. The first animation contains a girl who is sat and working

with a computer. As seen in Figure 4, the girl, along time, is practically

immobile. Hence, there is a lot of redundancy between all frames in the
animation. Therefore, only minimal differences are stored in the OPPs

couplets, except the first and last couplets, whose visualization coincide

with the first and last frames in the original animation. On the other
hand, the second animation is a sequence where the girl is jumping and

dancing along the screen from right to left (See Figure 5). In this case

There is a level of redundancy that is minor than the one found in the
first animation because there are more noticeable changes between

consecutive frames.

Input: A 1D-EVM p that contains a set of segments which were

codified through a linearized 2D frame.
The values xSize and ySize corresponding to the resolution

of the original animation.

The graphics context g where the rectangles in p are going
to be displayed.

Output: True if and only if the number of dimensions of p is 1.

False if and only if the number of dimensions of p is not 1,
hence, elements of p were not displayed.

Procedure DisplaySegments(EVM p, xSize, ySize, g)

if (p.getN() ≠ 1) then return False

int s_1, s_2 // Initial and final points of a segment in p.

int sLength // The length of a segment in p.

int x1, x2 // Coordinates along X1-axis of a pixel to be painted.

while(Not(EndEVM(p)))

s_1 = getCurrentCoord(p)

ReadHvl(p)
s_2 = getCurrentCoord(p)

ReadHvl(p)

sLength = s_2 - s_1
x1 = floor(s_1 / ySize)

x2 = s_1 mod ySize

for i = 0 until sLength - 1 do
g.fillRect(x, y, 1, 1)

y++

if (y == ySize) then
 y = 0

 x++

end-of-if

end-of-for

end-of-while

return True

end-of-procedure
Algorithm 6. Displaying the segments that compose a 1D-OPP expressed

through the EVM. Such segments are associated to a linearized frame.

CGIV 2008 and MCS’08 Final Program and Proceedings 171

According to this experiment it can be concluded that the EVM’s
conciseness, respect to the representation of animations in linearized

way, depends of the degree of redundancy between the frames

associated to such animations. This valuable property, identified
previously in [2] and [11] where the EVM was also used for managing

video sequences, is preserved in the present methodologies.

Consider the animation presented in Figure 6. Such video
sequence corresponds to the visualization of blood flow through laser

speckle flowgraphy [7]. It is composed by eleven frames whose

resolution is 601 × 545. The animation is given in grayscale with 256
levels. In Figure 1 there were presented some frames of a sequence that

presents a coronagraph image of a radiation storm [5]. Such animation

contained seven frames with resolution 256 × 256 and 256 colors. Both
animations share the characteristic that the value of a pixel in a frame is

distinct from the value of that same pixel in the next frame. Hence, the

level of redundancy to expect is very low or possibly inexistent. As
commented previously, because of the accuracy required when these

sequences are analyzed, any kind of threshold, which could elevate the

redundancy degree, is prohibited. For example, in the animation from
Figure 6 it could be required to identify micro-vessels in a given region

of a patient’s tissue. This kind of vessels could be detected in regions

whose width is just one pixel. Hence, some threshold, in order to reduce
the complexity of the images and for increasing the level of redundancy

between them, could be not appropriate because vital information could

be omitted. The sequence from Figure 6 required, according to our
method, 6,708,552 extreme vertices for its representation through the

3D-EVM. The EVM associated to the 3D-OPP that describes the

animation from Figure 1 required 1,089,040 extreme vertices. At this
point is important to mention that the obtained representations, for

videos from Figures 1, 4, 5 and 6 are unique and accurate because

methods for elevating redundancy were not applied.
Finally, the conciseness of the final representations can be

increased by taking in account some of the known methods for file

compression. In our case we compressed the final files using GZIP
standard [13]. Animations from Figures 1, 4, 5 and 6 have associated

final files of sizes 2.8 MB (256 × 256, 256 colors), 1.43 MB

(320 × 240, 64 colors), 3.26 MB (320 × 240, 64 colors), and 20.6 MB

(601 × 545, 256 gray levels) respectively.

Conclusions and Future Work
This work has been possible because of the Extreme Vertices

Model in the n-Dimensional Space (nD-EVM). The Extreme Vertices

Model allows representing nD-OPPs by means of a single subset of

their vertices: the Extreme Vertices. The description given here for the
nD-EVM is in fact a very brief description of the capabilities of the

model because there have been developed simple and robust algo-

rithms, besides the ones presented in this work, for performing the most
usual and demanding tasks on polytopes modeling such as closed and

regularized Boolean operations, boundary extraction, set membership

classification operations, and measure operations (see [2] and [9] for
more details). In this aspect we mention the development of other “real

world” practical applications under the context of the nD-EVM, which

are widely discussed and modeled in [9]. These practical applications,
through we have showed the versatility of application of the nD-EVM,

consider: (1) a method for comparing images oriented to the evaluation

of volcanoes’ activity; (2) the way the nD-EVM enhances Image Based
Reasoning; (3) the manipulation and extraction of information from 3D

datasets (see also [10]), and finally, (4) an application to collision

detection between 3D objects through the nD-EVM.
This work has presented some results obtained from a proposed

method for representing video sequences by considering 3D-OPPs

embedded in 3D Time-Color Space and finally expressing such OPPs
through the 3D-EVM. Hence, the next logical step considers the

application of the algorithms in the nD-EVM in order to extract useful

information from the represented animations. We will study how a
geometrical and/or topological interrogation to an EVM can share

information and knowledge about the sequence that it represents.

Frame 1 Frame 80 Frame 146

Figure 4. Three main frames taken from the first animation used for conversion
to the 3D-EVM: There were required 535,382 extreme vertices for encoding 146

frames (original sequence taken from [3]).

Frame 1 Frame 50 Frame 100

Figure 5. Three main frames taken from the second animation used for
conversion to the 3D-EVM: There were required 1,183,728 extreme vertices for

encoding 100 frames (original sequence taken from [3]).

Frame 2 Frame 6 Frame 10

Figure 6. Three main frames taken from an 11 frames animation obtained
through laser speckle flowgraphy. This animation shares the visualization of

blood flow in a given region (original sequence taken from [7]).

References

[1] Aguilera, A. & Ayala, D. Orthogonal Polyhedra as Geometric Bounds

in Constructive Solid Geometry. 4th ACM Siggraph Symposium on

Solid Modeling and Applications SM'97, pp. 56-67. USA, 1997.

[2] Aguilera, A. Orthogonal Polyhedra: Study and Application. PhD

Thesis. Universitat Politècnica de Catalunya, 1998.

[3] Center for Computing Technologies, Digital Media/Image Processing,
University of Bremen. Web site: http://www.tzi.de/tzikeyer/index.html

[4] Koloros, M. & Zára, J. Coding of vectorized cartoon video data.

Proceedings of Spring Conference on Computer Graphics 2006, pp.

177-183. Comenius University, Bratislava, 2006.

[5] Koppeschaar, C. Astronet’s Web Site:

http://www.xs4all.nl/~carlkop/auralert.html

[6] Kwatra, V. & Rossignac, J. Space-Time surface simplification and
Edgebreaker compression for 2D cel animations. International Journal

of Shape Modeling, vol. 8, No. 2, December 2002.

[7] Laser Speckle Flowgraphy User Forum. Web site:

http://leo10.cse.kyutech.ac.jp/lsfg/

[8] Pérez-Aguila, R. The Extreme Vertices Model in the 4D space and its

Applications in the Visualization and Analysis of Multidimensional

Data Under the Context of a Geographical Information System. MSc

Thesis. Universidad de las Américas-Puebla. México, May 2003.
[9] Pérez-Aguila, R. Orthogonal Polytopes: Study and Application. PhD

Thesis. Universidad de las Américas-Puebla. México, 2006.

[10] Pérez-Aguila, R. Modeling and manipulating 3D Datasets through the

Extreme Vertices Model in the n-Dimensional Space (nD-EVM).

Journal Research in Computer Science, Special Issue: Industrial

Informatics. Volume 31, 2007, pp. 15-31.

[11] Pérez-Aguila, R. Representing and Visualizing Vectorized Videos

through the Extreme Vertices Model in the n-Dimensional Space
(nD-EVM). Journal Research in Computer Science, Special Issue:

Advances in Computer Science and Engineering. Volume 29, 2007,

pp. 65-80.

[12] Pérez-Aguila, R.; Aguilera, A. & Lázzeri Menéndez, S. G. A

Procedure for Comparing Color 2-Dimensional Images through their

Extrusions to the 5-Dimensional Colorspace. Proceedings of the 15th

International Conference on Electronics, Communications, and
Computers CONIELECOMP 2005, pp. 300-305. Published by the

IEEE Computer Society. ISBN: 0-7695-2283-1. México, 2005.

[13] Salomon, D. Data Compression: The Complete Reference. Springer,

1997.

[14] Spivak, M. Calculus on Manifolds: A Modern Approach to Classical

Theorems of Advanced Calculus. HarperCollins Publishers, 1965.

Author Biography

Ricardo Pérez-Aguila received his BSc (2001), MSc (2003) and

PhD (2006) degrees in Computer Science from the Universidad de las

Américas-Puebla (UDLAP). In 2003-2006 he worked with the Actuarial

Sciences, Physics and Mathematics Department at the same institution.

In 2007 he incorporated as a full time professor/researcher at the

Universidad Tecnológica de la Mixteca (UTM). His research interests

consider the study of n-Dimensional Polytopes by analyzing their

Visualization, Geometry, Topology, Representation, and Applications.

172 ©2008 Society for Imaging Science and Technology

