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Abstract
There are a number of ways to reproduce an image, for an

example gamut mapping, halftoning and compression. To find the
best reproduction among a number of variants of the same repro-
duction algorithm, a psychophysical experiment can be carried
out. Image difference metrics have been introduced to eliminate
these experiments. To do this the metrics must reflect the per-
ceived image difference. One way to evaluate the overall per-
formance of image differnece metrics is to compute the corre-
lation coefficient between perceived and predicted image differ-
ence. This does not always reflect the true performance of the
metric, therefore we propose to use the ranking based on the pre-
dicted image difference for each scene as a data set for the rank
order method. This results in a z-score similar to the overall per-
ceived image difference, the correlation coefficient between met-
ric z-score and perceived z-score reflects the overall performance
of the image difference metrics.

Introduction
There are a number of algorithms involved in the to repro-

duction of an image, for instance gamut mapping, halftoning and
compression. To identify the best reproduction among a num-
ber of variants of the same reproduction algorithm (e.g. JPEG
compression), a psychophysical experiment can be carried out.
This will result in a scale with the visual difference of the repro-
ductions from the original. These psychophysical experiments
are both time and resource demanding. Image difference met-
rics have been introduced to entirely or partially eliminate psy-
chophysical experiments. One way to evaluate the overall perfor-
mance of such metrics is to investigate the correlation between
the visual difference and the predicted image difference for a set
of test images. However, this kind of evaluation can reveal little
about the performance of the image difference metrics, due to the
nonlinearities in the human visual system.

The ultimate goal for image difference metrics is to be able
to predict perceived image difference for all conditions and mod-
ifications. It has been shown that image difference metrics can
predict perceived image difference for some scenes [1, 2], but
the image difference metric should also be able to predict overall
image difference. In gamut mapping the overall best gamut map-
ping algorithm (GMA) should be used on an image set. If the
performance of the image difference metrics are reliable, and re-
flects their true performance, psychophysical experiments could
entirely or partially eliminated.

Toet and Lucassen [3] use the ranking from the observers
and ranking from their image fidelity metric to evaluate perfor-
mance of the metric, this is done because we cannot expect a
linear relation between the metric and perceived distortion due
to the nonlinearities in the human visual system. Other re-
searchers have also used the ranking either directly comparing
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metric ranking with subjective ranking or with statistical ranking
methods [4, 5, 6].

One method adopted by some researchers for evaluation is
the Spearman’s rank order correlation [7, 8, 9]. This method
assess the relationship between two variables, without making
any assumption about their frequency distribution. This method
will reduce the influence of extreme single observations, and can
reflect more general relations.

We propose to rank the images according to their calculated
distance from the original. This data is used in the rank order
method, resulting in z-score directly comparable to observers z-
score. We present a case based on a set of gamut mapped images,
and show how ranking the results from image difference metrics
reflect their performance.

State of the art of image difference metrics
In recent years, several attempts have been made to develop

image difference metrics that correlate well with the perceived
difference.

S-CIELAB [10] is a an extension of the CIELAB ∆E∗
ab met-

ric, aiming to take into account the spatial-color sensitivity of the
human eye. It was developed with two goals; to simulate the
spatial blurring performed by the human visual system (HVS),
and to be consistent with the basic CIELAB color difference
for uniform patches. Thus it consists in transforming the im-
age data into a perceptual opponent-color space, and blurring the
channels with convolution kernels corresponding to the contrast
sensitivity functions (CSF) of the HVS, before converting back
to a CIEXYZ representation. Then a pixelwise color difference
is calculated using the conventional CIELAB ∆E∗

ab equations.
Practically, this means that the color difference at each pixel is
weighted by the differences computed over a local neighborhood.

iCAM [11] is a framework for an image appearance model,
which incorporates more sophisticated models of chromatic
adaptation than S-CIELAB. It is based upon previous research
in many fields such as uniform color spaces, hue linearity, the
image surround importance, image difference and image qual-
ity measurement algorithms. The model uses von Kries chro-
matic adaptation identical to the one found in CIECAM02. The
adapted signals are transformed into the IPT color space. The
adapting and the surround luminance levels are taken into ac-
count, to allow for the prediction of various appearance phenom-
ena.

The Structural Similarity Index (SSIM) proposed by Wang
et al. [7] attempts to quantify the visibility of the difference be-
tween a reference and a distorted grayscale image. The algorithm
defines the structural information in an image as those attributes
that represent the structure of the objects in the scene, indepen-
dently of the average luminance and contrast. The index is based
on a combination of luminance comparison, contrast comparison
and structure comparison. The comparison is done for local win-
dows in the image and the overall image difference is computed
as the mean of all these local windows.

Hong and Luo’s hue angle metric [12] is based on the ob-
served fact that systematic errors over the entire image is quite
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noticeable and unacceptable. Therefore the metric is constructed
based on four conjectures, that pixels or areas of high signif-
icance can be identified and a suitable weight allocation can
be found, larger areas of the same color should be weighted
higher, larger color difference between the pixels should get
higher weights, and finally that hue is an important color per-
cept for discriminating colors within the context. The proposed
algorithm creates a histogram based on the hue angle, and then
sorts this ascending so that different weights can be applied to
different sections of the histogram. The overall color difference
is then calculated by multiplying the weighted hue angle for ev-
ery pixel with the pixel-by-pixel color difference.

Psychophysical experiment

Figure 1. Images used in the experiment. They have various characteristics in

terms of gamut, contrast, contents, details, etc.

20 different images (Figure 1) was chosen for a psychophys-
ical experiment [13]. Considering the color gamut of a OCE TCS
500 printer, the amount of out-of-gamut colors ranged from 25%
to 100% with a mean of 57%. The images were reproduced using
5 different gamut mapping algorithms.

• HPminDE (Hue preserving minimum ∆E∗
ab clipping) which

is a baseline gamut mapping algorithm proposed by the CIE
[14]. The algorithm does not change in-gamut colors at all,
while out-of-gamut colors are mapped to the closest color
on the destination gamut while preserving the hue.

• SGCK [14] is an advanced spatially invariant sequential
gamut compression algorithm. The lightness is first com-
pressed by a chroma dependent sigmoidal scaling, resulting
in high chroma colors being compressed less than neutral
ones. The resulting colors are then compressed along lines
toward the cusp [15] of the destination gamut using a 90%
knee scaling function. For the final compression the image
gamut is used as the source gamut.

• Zolliker and Simon [16] proposed a spatial gamut mapping
algorithm; its goal being to recover local contrast while pre-
serving lightness, saturation and global contrast. A sim-
ple clipping is performed as first step; then by using an
edge-preserving high pass filter the difference between the
orginal and gamut clipped image is filtered. The filtered
image is then added to the gamut clipped image. As a last
step the image is clipped in-order to be in-gamut.

• Kolås and Farup [17] recently proposed a hue- and edge-
preserving spatial color gamut mapping algorithm. The im-
age is first gamut clipped along straight lines toward the
center of the gamut. A relative compression map is then

created from the orignal and clipped image. Using this
compression map, a new image can be constructed as a lin-
ear convex combination of the original image and neutral
gray image. This image is in turned filtered by a edge-
preserving smoothing minimum filter. As the final step the
gamut mapped image is constructed as a linear convex com-
bination of the original image and neutral gray using the
filtered map.

• Gatta et al. [18] proposed a multiscale algorithm preserv-
ing hue and local relationship between closely related pixel
colours. First a scale-space representation of the image and
then gamut clipping the lowest scale is constructed. The
resulting gamut compression is then applied to the image
at the next smallest scale. Operators are used to reduce the
effect of haloing. The process is repeated until all scales
are treated. The Fourier domain is used to speed up the
process.

The 20 different images have been evaluated by 20 ob-
servers in a pair comparison experiment [13]. All observers had
normal or corrected to normal color vision. The observers were
presented with the original image in the middle of the screen,
with 2 different reproductions on each side. The observers were
asked to pick the image with the most accurate reproduction with
respect to the original image. When the observer had picked one
image, a new pair of reproductions was shown until all combina-
tions were evaluated. All pairs were also shown twice in opposite
order for consistency. The monitor was a Dell 2407WFP LCD
display calibrated with a D65 white point and a 2.2 gamma. The
viewing conditions were chosen as close to the ones described in
the CIE guidelines [14] as possible. The level of ambient illumi-
nation was measured to approximately 20 lux. The observer was
seated approximately 50 cm from the screen.

Z-scores
The Z-scores are based on Thurstone’s law of comparative

judgement [19, 20]. Data collected are transformed into interval
scale data where scores represent the distance of a given image
from the mean score of a set of images in the scene [21], and
therefore being relative. The 95% confidence intervals are calcu-
lated in the same way as proposed by Morovic [21]. The error
bars are then computed as

X̄ ± σ√
N

where X̄ is the Z-score, σ is the the standard deviation and N
is the size of the sample set. For these experiments this is the
number of observers multiplied with 2, because each image pair
was shown twice for consistency. With this confidence interval
there is a 95% estimate that the value will be within the interval,
and if the confidence interval of another GMA is outside this
interval the difference is significant.

Image difference metrics
5 image difference metrics have been choosen, ∆E∗

ab, S-
CIELAB [10], iCAM [11], SSIM [7] and the hue angle algorithm
[12]. All metrics except SSIM has a scale where closer to 0 indi-
cate a reproduction closer to the original, while SSIM has a scale
between 0 and 1, where 1 indicate an identical reproduction.

Results
From the pair comparison experiment z-scores were calcu-

lated, indicating the performance of the different GMAs. From
Figure 2 we can see that the Gatta algorithm gets the highest
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Figure 2. Z-score from pair comparison experiment I. Gatta cannot be differeniated

from SGCK and Zolliker. Kolås is rated barely lower than the Gatta, SGCK but

cannot be differeniated from Zolliker. HPminDE receives the lowest z-score from the

observers.

score from the observers, indicating the lowest visual difference
from the original. This algorithm gives statistically the same vi-
sual difference from the original as the SGCK and Zolliker algo-
rithm. Kolås has the fourth best score, but has the same visual
difference as Zolliker. HPminDE clearly gives the highest vi-
sual difference from the original, the low score here indicating a
large consensus among the observers about the low performance
of this algorithm.

Rank order based on metric order
Aiming to develop an universal image difference metric,

this metric should work across mulitple scenes and in different
conditions. One way of evaluating the performance of image dif-
ference metrics is to check the correlation between the perceived
image difference and the calculated image difference [22, 23] as
seen in Figure 3. We can see from Figure 3 that the data points
are very spread, and there is very little correlation found. Thus
it is not possible in this way to use the image difference results
as a of evaluating the performance of the best gamut mapping
algorithm. This is the case for all the metrics, where the corre-
lation is generally low for all scenes as seen in Table 1 for both
Pearson’s correlation and Spearman’s rank order correlation. The
Spearman’s rank order correlation does not take into account the
frequency distribution of the variables, and should therefore be
less sensitive to extreme values, but as seen in Table 1 this is not
a good measure for overall prediction of performance. The z-
score for each scene does not say anything about the difference
between scenes, it is based on how preferred each image is within
each scene. We propose to process the image difference metric
results in the same way as we commonly do with the results from
a rank order perceptual evaluation.

The rank for each metric in the 20 scenes have been used as
a basis for the overall performance of the GMAs, this correspond
to 20 observers in a ranking experiment. If the result from the
metrics match the overall results from the psychophysical exper-
iment (Figure 2), the metrics predict perceived image difference.
This method will only provide information about the order of the
image samples, not information of the distance between the sam-
ples.

In principle the rank order and pair comparison approaches
provide the same information [24]. The rank order data has been

Figure 3. Z-score from observers against ∆E∗
ab values. The data points are very

spread,and we get a very low correlation between the z-scores and ∆E∗
ab values.

The HPminDE algorithm is rated as the best by ∆E ∗
ab the opposite of the observers.

Table 1. Correlation between all z-scores and all algorithms. The correlation here

is low for all metrics both for Pearson and Spearman. SSIM has the highest Pearon’s

correlation, but this is not good, indicating a low performance. For the Spearman’s

correlation the hue angle algorithm has the highest correlation, but still very low. The

plot for ∆E∗
ab with a linear fitted line and calculated Pearson’s correlation is found in

Figure 3.

Correlation
Metric Pearson Spearman
∆E∗

ab -0.08 0.11
SSIM 0.16 0.05
S-CIELAB -0.06 0.10
iCAM 0.01 0.07
Hue angle -0.11 0.13

used to generate corresponding pair comparison data [24, 25],
and the z-scores were computed as for a pair comparison exper-
iment [21, 20]. Babcock [26] got similar score for pair compar-
ison, rank order and graphical rating, this implicate that scale
values from one type of experiment can be directly compared
to scale values from another type of experiment. The rank or-
der z-scores in this experiment have been calculated by using the
Colour Engineering Toolbox [27].

One disadvantage by using rank order is the number of
scenes needed, in order to provide useful results the number of
scenes must be high. The more scenes used, the more accurate
results. The more data provided the more accurate the results will
become, and the confidence intervals in the metric’s z-score will
become smaller. The confidence intervals can be used as a mea-
sure of when a reproduction method is significantly better than
another, and this provides more information than a Pearson’s or
Spearman’s rank order correlation calculation.

From Figure 4(a) we can see that results from the rank or-
der for ∆E∗

ab. The HPminDE have the highest z-score, but this
has the lowest z-score from the observers. This GMA will clip
the color to the minimum ∆E∗

ab and will always be rated as the
best by the ∆E∗

ab formulae. The SGCK gets a very low score
in the ranking, while the observers rated this as one of the best
gamut mapping algorithms. Figure 4(b) shows z-score from the
observers plotted against the rank order z-score from ∆E∗

ab. The
Pearson’s correlation here is -0.62, indicating different scores for
the observers and ∆E∗

ab.
Figure 5(a) shows the results for SSIM, as we can see the

HPminDE gets the lowest score by SSIM. This is the same as
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(b) Observer z-score against ∆E∗
ab rank order score.

Figure 4. Rank order score for ∆E∗
ab values, and these values plotted against z-scores from observers.
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(b) Observer z-score against SSIM rank order score.

Figure 5. Rank order score for SSIM values, and these values plotted against z-scores from observers. The results here indicate a very high performance by the SSIM, the

correct ranking of the HPminDE is the main reason for this, but also the similar ranking of the remaining gamut mapping algorithms.
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the observers. The four other gamut mapping algorithms cannot
be differentiated with a 95% confidence interval. The observers
also have very small differences between these algorithms, the
Kolås algorithm has a score just lower than the SGCK, Gatta and
Zolliker. The score from SSIM is very similar to the score from
the observers, this is also verified with a correlation between the
scores of 0.98 (Figure 5(b)). The correct ranking of the HP-
minDE gamut mapping algorithm is the basis for the excellent
correlation here, and this ranking (Figure 5(a)) also reflect the
observers ranking (Figure 2). The overall Pearson’s correlation
of only 0.16 and Spearman’s rank order correlation of 0.05 (Table
1) between the z-scores and SSIM scores, these are therefore not
a good measure of overall performance, even though high cor-
relation can be found within each scene in both measures. The
correlation within a scene can be average, but the ranking can be
correct as seen on Figure 6. Here the Spearman’s correlation will
perform well, while the Person’s only perform average. In other
cases the Spearman’s correlation will perform average, while the
Pearson’s correlation will perform excellent. Spearman’s rank
order correlation can provide low correlation of clusters of data
are found, but the ranking within the cluster is not necessarily
correct. When the ranking is used in the rank order method, the
normal distribution is taken into account and will therefore better
handle extreme values. Because of this the ranking of the results
within each scene and using these as a basis for the rank order
z-scores, SSIM will reflect perceived image difference.

Figure 6. Correlation between z-score and calculated image difference for SSIM

on scene 14. The visual difference between the images is not correctly predicted by

SSIM, but the ranking is. Based on this the rank order method on the SSIM data will

be a better measure.

The are large differences between the score from iCAM and
the observers, mostly due to the calculated values for HPminDE
in iCAM. iCAM has a spreading of the 4 best algorithms from
the observers, and the HPminDE is rated as the best by iCAM
opposite of the observer rating. The Pearson’s correlation be-
tween the observer z-score and iCAM z-score is -0.68, resulting
in a low performance by iCAM.

The HPminDE receives the highest score by S-CIELAB,
both the SGCK and Kolås get low scores. The results for S-
CIELAB is very similar to the ones found with ∆E∗

ab. This results
in a low Pearson’s correlation of -0.62.

The hue angle algorithm have similar results as ∆E∗
ab and

S-CIELAB, this is not surprising due to the familiarity between
these metrics. The ranking of the GMAs are the same with only
minor differences in the z-score values, this results in almost the

same Pearson’s correlation between observer z-score and metric
z-score as S-CIELAB, with -0.72.

Table 2. Rank indicate the pearson’s correlation between rank order z-score and

observer z-score. Mean Pearson indicate correlation between ranked metric score

and observer z-score calculated as Pearson’s correlation, where the correlation for

each scene has been averaged. Mean Spearman is similar to Mean Pearson but for

Spearman’s rank order correlation.

Correlation
Metric Rank Mean Mean

Pearson Pearson Spearman
∆E∗

ab -0.62 0.28 0.17
SSIM 0.98 0.84 0.78
S-CIELAB -0.62 0.28 0.20
iCAM -0.68 -0.03 -0.07
Hue angle -0.72 0.27 0.15

Overall observations
SSIM is the image difference metric with the best fit be-

tween the observers and the algorithm z-score (Table 2), indicat-
ing a good prediction of perceived image difference. All other
metrics have a correlation below 0, indicating that these metrics
do not predict perceived image difference well. In all metrics
except SSIM the HPminDE gamut mapping algorithm has been
miscalculated, i.e. given a too high rank by the metrics. These
metrics are based on ∆E∗

ab and therefore the HPminDE will be
given a high rank.

The results here indicate that a ranking of the algorithms
value within each scene and using this ranking to calculate the
rank order z-score gives a better prediction of perceived im-
age difference than calculating the correlation between algorithm
score and observer z-score from a pair comparison experiment.

By using the rank order method the results are also less sen-
sitive to extreme values as long as a reasonable number of scenes
are used.

Conclusions and perspectives
We propose a new way of uning image difference metrics

to evaluate the performance of image reproduction algorithms,
ranking the score from the metrics and calculating z-scores based
on this. This gives an overall score for the performance, and we
avoid the problem of scale differences between scenes and the re-
sults are less sensitive to single extreme values. The results show
that image difference metrics can predict overall perceived image
difference, when we look at the ranking and discard information
about the distance between the reproductions. This method could
be applied to different reproduction algorithms, such as compres-
sion, halftoning and gamut mapping.

It has been shown that image difference metrics still
have problems with predicting perceived image difference, even
though the ranking might be correct more work must be carried
out to improve the metrics. A larger dataset with an increased
number of image reproduction methods should carried for a bet-
ter testing of the proposed method.
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