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Abstract
The effect on cone excitations of a change in illuminant on

a scene may be predicted by von Kries scaling, but these predic-
tions are not perfectly accurate. Here, a non-parametric method
was used instead, but which preserved the principle of indepen-
dence of activity in cone or cone-opponent mechanisms. Per-
formance was evaluated over samples taken from 50 hyperspec-
tral images of vegetated and non-vegetated natural scenes under
large changes in daylight illuminant. Taking due account of dif-
ferences in degrees of freedom, the non-parametric model gave
significantly better predictions than von Kries scaling of cone or
cone-opponent activity.

Introduction
Von Kries scaling refers generally to the idea that the spec-

tral effects of the prevailing light on the sensitivity of each class
of cone receptor of the eye depend only on activity in that cone
class [1, 2]. Although originally conceived for the adaptation
of the eye to stimulus lights, many models of colour constancy,
including Land’s Retinex models [3, 4], have assumed that von
Kries scaling applies also to cone activity in response to lights
reflected from surfaces. Thus, if l, m, and s are the excitations of
long-, medium-, and short-wavelength-sensitive cones for light
reflected from a surface under one illuminant and l′, m′, and s′
are the corresponding excitations for another illuminant, then von
Kries scaling models their relationship by a simple multiplica-
tion; that is,

l′ = kL l,

m′ = kM m, (1)

s′ = kS s,

where the coefficients kL,kM,kS are constants, which are depen-
dent only on activity in the corresponding cone class, and which
may be estimated from the data by ordinary least squares or from
the ratio of excitations of a spectrally neutral surface. [The er-
ror terms representing random variation, which would normally
be included on the right-hand side of (1), have been omitted for
clarity.]

It is emphasized that the statement (1) is not about chro-
matic adaptation (e.g. [5, 6, 7]) but about how activity in a given
cone class—or sensor type—varies with the spectrum of the il-
lumination on a scene [8, 9]. In principle, the latter provides
a recipe for the former. Because interactions between different
cone classes are not involved in (1), this form of von Kries scal-
ing is referred to as a diagonal-matrix transformation [10].

When tested in computer simulations, von Kries scaling has
indeed been found to give a good description of the effects of
daylight illuminant change on natural scenes [11], and also with
other surfaces and illuminants [12]. The predictions are not,
however, perfectly accurate. Figure 1 (left panel) shows an exam-
ple of the excitations of medium-wavelength-sensitive cones for
light reflected from 100 surfaces drawn randomly from a natural

vegetated scene under a daylight of correlated colour temperature
4000 K plotted against the corresponding excitations for light
reflected from the same surfaces under a daylight of correlated
colour temperature 25000 K. Similar distributions were obtained
for short- and long-wavelength-sensitive cones. The straight line
is a linear regression passing through zero. Although the fit is
good, there are regions where there appears to be a local bias
with the data mainly on one side of the curve, as the expanded
section in the right panel of Fig. 1 makes clear. Figure 2 shows
the scene from which these excitations were calculated.
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Figure 1. Modelling cone excitations by von Kries scaling. Left panel

shows a linear fit with zero intercept. The right panel is an expanded section

near the origin revealing local bias. Data for medium-wavelength-sensitive

cones.

Figure 2. Image of the scene from which the cone excitations plotted in

Fig. 1 were calculated. The small grey sphere at the bottom left was masked

in the calculation of cone excitations.

There are two ways in which the performance of von Kries
scaling may be improved (for non-von-Kries approaches, see
e.g. [9, 13]). The first way is to generalize the principle of in-
dependence of activity in cone mechanisms [1] so that it ap-
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plies after opponent interactions between cone signals have taken
place [14, 15]. Thus, activity within a cone-opponent mechanism
is assumed to be affected only by activity within that mecha-
nism [16, 17]. The accuracy of predictions is usually increased
[14, 18], owing to the sharpening of spectral sensitivities that
occurs with opponency [16, 19, 17]. For non-biological applica-
tions, spectral sensitivities may be optimized directly [20, 21].

The second way of improving performance, but still pre-
serving independence, is to generalize the scaling transforma-
tion. This has been done by introducing a non-zero offset so that
the multiplications in (1) become affine transformations, which
can give a better fit to some post-receptoral combinations of cone
excitations [22, 23].

The aim of the present work was to develop the second way
of improving performance by allowing the transformations to be
any smooth function of the individual cone excitations l, m, s;
that is, the excitations l′, m′, s′ are modelled by

l′ = fL(l),

m′ = fM(m), (2)

s′ = fS(s),

where fL, fM, fS are smooth, not necessarily linear, functions of
cone excitations, each function dependent only on activity in the
corresponding cone class. [As in (1), the error terms that would
normally be included on the right-hand side of (2) have been
omitted for clarity.] An analogous approach may be taken to
predicting cone-opponent excitations.

The problem then is to estimate these smooth functions fQ
in (2) for Q = L, M, S. One possible approach is to model the
functions by polynomial regression [24], but it is known to have
several disadvantages [25], including the fact that degree of the
polynomial cannot be controlled continuously.

The approach taken here was non-parametric, that is, not de-
pendent on any particular model of the functions fL, fM, and fS,
and was based on local linear regression [26, 25], as explained
later. It was found that for both cone and cone-opponent excita-
tions, local linear regression provided a more accurate descrip-
tion than scaling, without violating the independence principle.

To avoid confusion, a distinction should be drawn between
this local linear approach to modelling the effects of illuminant
change on cone excitations and a previous study of von Kries
scaling [27] which used local linear models of surface reflectance
and which was concerned with finding the illuminants for which
von Kries scaling holds perfectly.

Methods
In computer simulations, spectral reflectances were drawn

from 50 hyperspectral images of natural scenes [11]. Each scene
was assumed to be illuminated by a spatially uniform daylight
illuminant with incident spectral radiance E(λ ) or E ′(λ ), with
correlated color temperatures 25000 K and 4000 K, respectively.
Wavelength λ ranged over 400–720 nm in 10-nm steps. Exci-
tations of the long-, medium-, and short-wavelength-sensitive
cones at each selected surface in a scene were calculated for
the Smith and Pokorny fundamentals [28, 29], L(λ ), M(λ ), and
S(λ ). Excitations of the corresponding cone-opponent mech-
anisms with sharpened spectral sensitivities [30, 16] L#(λ ),
M#(λ ), and S#(λ ) were calculated [17] as linear combina-
tions L#(λ ) = 2.46L(λ ) − 1.97M(λ ) + 0.075S(λ ), M#(λ ) =
−0.66L(λ ) + 1.58M(λ )− 0.12S(λ ), and S#(λ ) = 0.09L(λ )−
0.14M(λ )+1.00S(λ ). This particular choice of coefficients was
not critical, however, as von Kries scaling and the non-parametric

method were applied at the same level, that is, either to cone ex-
citations or to cone-opponent excitations.

Thus, if the effective spectral reflectance [31] of the selected
surface was R(λ ), then the individual cone excitations q = l, m,
s for illuminant E(λ ), and q′ = l′, m′, s′ for illuminant E ′(λ ),
were obtained from

q =
∫

Q(λ )E(λ )R(λ )dλ , (3)

and

q′ =
∫

Q(λ )E ′(λ )R(λ )dλ , (4)

where Q(λ ) = L(λ ), M(λ ), S(λ ). Analogously, cone-opponent
excitations q# = l#, m#, s# for illuminant E(λ ), and q# ′ = l# ′,
m# ′, s# ′ for illuminant E ′(λ ), were obtained from

q# =
∫

Q#(λ )E(λ )R(λ )dλ , (5)

and

q# ′ =
∫

Q#(λ )E ′(λ )R(λ )dλ , (6)

where Q#(λ ) = L#(λ ), M#(λ ), S#(λ ).
Data for analysis therefore consisted of pairs of cone exci-

tations (qi,q′i) as in (3) and (4), or pairs of cone-opponent excita-
tions (q#

i ,q
#
i
′) as in (5) and (6), for light reflected from N = 100

surfaces, i = 1,2, . . . ,N, drawn randomly from each scene under
the two daylight illuminants. The value of N is not critical pro-
viding that it is large enough for the distribution of excitations
not to be sparse, and similar results were obtained with much
larger values of N.

Fitting was based on local linear regression [25], which as-
sumes that the function fQ relating q to q′ in (2) can be ade-
quately approximated locally by a Taylor expansion (here of de-
gree one); that is, the value of the function fQ at the point q in
the neighbourhood of q0 is approximated by

fQ(q)≈ a0 +a1 (q−q0) ,

where the coefficients a j , j = 0,1, are related to the zero- and
first-order derivatives of the corresponding excitation; in partic-
ular a0 = fQ(q0).

For each q, estimates â j of the coefficients a j were obtained
by minimizing the locally weighted sum of squares,

N

∑
i=1

wh(q−qi)
[
q′i− (a0 +a1 (qi−q))

]2
,

where wh is the weight function, which is characterized by a
bandwidth h and which governs the influence of each point qi
on the local linear estimate. The local linear regression estimate
f̂Q(q) of q′ is then â0. The weight function used here is expressed
in terms of a kernel K, so that wh(q− qi) = K((q− qi)/h). As
there were regions where data were sparse, a Gaussian func-
tion, K(u) = (2π)−1/2 exp(−u2/2), which has unbounded sup-
port, was used.

The bandwidth h controls the spread of the weight function.
A small bandwidth results in a variable estimate which follows
the data very closely, whereas a large bandwidth gives a smooth
but biased estimate, with the data falling mainly on one side of
the curve. Thus the choice of the bandwidth is crucial. The mean
integrated squared error, MISE =

∫
( fQ − f̂Q)2dq, is a way to
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balance the bias against the variance. This loss function, how-
ever, depends on the unknown fQ and therefore cannot be used
directly. By the bootstrap principle [32], the unknown quantities
can be approximated by re-sampling from the estimated distribu-
tion of the data.

This approach was used here to find an estimate of the band-
width that minimized MISE [33]. Accordingly, 200 bootstrap
samples were obtained by the wild bootstrap [34] and for each of
these samples the local linear estimate was calculated as a func-
tion of the bandwidth h. An approximation of the MISE was then
calculated from these estimates and the value of h that minimized
this approximation was used as the estimate of the MISE-optimal
bandwidth.

A bootstrap test, based on 500 bootstrap samples, was also
used for the comparison of the local linear regression with von
Kries scaling. The test statistic was the scaled difference between
the residual sums of squares for the two models. It is asymptoti-
cally F-distributed with degrees of freedom corresponding to the
difference between the degrees of freedom of the local and von
Kries scaling models, and the residual degrees of freedom of the
local model [35].

Exactly analogous calculations were performed for pairs of
cone-opponent excitations (q#

i ,q
#
i
′), as in (5) and (6).

Results
Figure 3 shows the fit obtained by local linear regression

(continuous line), which apart from the deviation from linearity
at larger excitations, looks similar to the fit by von Kries scaling
(dotted line), here shown for long-wavelength-sensitive cones.
Similar results were obtained for medium- and short-wavelength-
sensitive cones. The adjusted R2 was very high, over 99% with
more than 42 of the 50 scenes for von Kries scaling, and more
than 46 of the 50 scenes for local linear regression. But these
R2 values are relatively insensitive to local biases, and, on an ex-
panded scale, marked differences between the fits obtained by
von Kries scaling and local linear regression become evident.
Figure 4 shows two expanded regions of the same graph. No-
tice that there is little offset near zero excitations (left panel) and
that the direction of the bias reverses at large excitations (right
panel).

This improvement is more than would have been expected
by the simple increase in the degrees of freedom associated with
the local model. A summary χ2 measure of the difference be-
tween the local and von Kries scaling estimates over all 50 scenes
and each of the three cone classes was calculated based on the p-
values derived from the F-statistics. This yielded χ2 > 335 with
d.f. = 50. For cone-opponent mechanisms, the corresponding
difference between local and von Kries scaling estimates yielded
χ2 > 359 with d.f. = 50. For both types of excitations, local lin-
ear regression was significantly better than von Kries scaling.

Discussion
As a procedure for predicting changes in cone excitations

due to changes in reflected light, von Kries scaling is efficient:
with just one degree of freedom for each cone class, it accounts
for much of the variance in receptor excitations due to changes
in illuminant. Nevertheless, as demonstrated here, it does show
small but statistically significant failures that can be compensated
for by local linear regression, in a way which preserves the prin-
ciple of independence of cone excitations or cone-opponent ex-
citations. Thus for applications where accurate predictions of
excitations under wide ranges of illuminant changes are impor-
tant, it may be useful to consider methods of fitting other than
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Figure 3. Modelling cone excitations by local fitting (solid line) and by von

Kries scaling (dotted line). Data for long-wavelength-sensitive cones.
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Figure 4. Expanded sections of Fig. 3.

linear transformations.
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