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Abstract 
In this work, a novel technique of objective spectral image 

quality evaluation is presented. The method is based on a 
Structural Similarity technique. The traditional approach, 
which deals primarily with gray-scale images, is extended to 
incorporate spectral data. The novel method has previously 
been tested against the conventional two-dimensional technique 
and proven to be more effective. The performance of the three-
dimensional Structural Similarity Index presented in this paper 
is tested along with the previously proposed kernel similarity 
metrics and a subjective technique - Perceptual Image 
Distortion Map. The tests show that the proposed three-
dimensional Structural Similarity Index performance is 
comparable to the rest of the measures in the task of spectral 
distortion evaluation. 

Introduction 
Digital imaging nowadays is undergoing dramatic 

changes. Appearance of capturing, recording and display 
systems that are capable of working with spectral data creates a 
whole set of problems that exist for conventional imaging, e.g. 
image quality assessment and adjustment [1,2]. By image 
quality, in this case, we mean the measure of the perceived 
difference from a reference image [3].  

In this paper, a novel technique of spectral image quality 
estimation is proposed. The main objective for creation of such 
measures is primarily lossy compression applications. A quality 
measure should be established with a possibility of computing 
the distortion value dynamically as the information is discarded 
from the image. This kind of metric should also be able to 
account for the characteristics of the human visual system. 
Other areas of application include, among others, electronic 
museums, archiving and printing industry applications.  

Several approaches to spectral image distortion 
measurement exist at the moment [4,5,6]. The choice of the 
method depends primarily on the end-user of the imaging 
chain. In case of applications that require high accuracy, the 
most appropriate method of image quality evaluation is 
subjective assessment. However, such methods require 
significant time and money consumption, which gives rise to 
the appearance of multiple objective measures. Most of these 
have emerged from gray-scale image metrics: mean-squared 
error, signal to noise ratio, percentage maximum absolute 
distortion etc. Nevertheless, none of these measures account for 
the characteristics of the human visual system [7]. One of the 
most popular solutions existing at the moment is the CIE 
recommended 1976 CIELAB and CIELUV color difference 
formulae [8]. However, these show significant discrepancies 
with the judgments obtained using the subjective technique. In 
an attempt to improve the perceptual uniformity of the 
measures several metrics have been developed [3]: CMC [9], 

BFD [10, 11], CIE94 [12] and CIEDE2000 [13]. A Blockwise 
Distortion Measure for Multispectral images (BDMM) has been 
suggested in [5]. The measure computes a quality estimate that 
corresponds to the human evaluation; however, it deals with the 
artifacts in the spatial direction and does not account for the 
specific spectral distortions. 

The algorithm, described in this paper, is an extension of a 
Structural Similarity Index (SSIM) [7] that incorporates 
spectral data [14]. SSIM is based upon an assumption that 
human visual system is highly adapted to extracting structural 
information from the images. SSIM compares local patterns of 
pixel intensities, assuming that luminance and contrast are 
normalized [7]. As a result a gray-scale spectral distortion map 
is obtained, which shows the areas where the visible distortions 
are in the image, and how large the distortions are. The three-
dimensional SSIM has already been tested against the two-
dimensional conventional measure. The novel method has 
proven to be more efficient in the task of color and spectral 
image discrimination [14]. 

Color Similarity Measures 
One of the most popular color similarity metrics so far has 

been the Euclidean distance [8] and measures based upon it. 
These have an advantage of simplicity in understanding and 
realization, however such metrics are not optimal. Euclidean 
distance calculates the difference between colors not taking into 
account the angle between color vectors, which produces a 
significant divergence for RGB image reproduction [15]. 

An alternative set of color similarity metrics was proposed 
in [15]. These consist of a set of kernel similarity measures that 
include polynomial, Gaussian radial basis (RBF), and sigmoid 
metrics. It was shown in [15] that the measures provide an 
excellent fit to the response of the human visual system in the 
task of image quality assessment. 

Kernels, in general, can be assumed to be dot products of 
vectors in a certain feature space, meaning that if we have two 
vectors xi and xj in the input domain X, we can produce a 
mapping [16]: 

(1) 
Polynomial kernel similarity measure can be presented as 

follows [12]: 
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where d is a parameter of the sensitivity of the measure, xi and 
xj are input color vectors. 

The Gaussian RBF kernel has the following form [16]: 

(3) 
where σ >0, σ is the parameter of the sensitivity of the function. 

And the sigmoid kernel based similarity can be presented 
as follows [16]: 
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(4) 
where k and ϑ are variable sensitivity parameters. 

In order to account for the characteristics of the human 
visual system the input data is multiplied by Spectral Luminous 
Efficiency Function for photopic vision [17] and illumination 
factor [18].  

Structural Similarity Index 
SSIM is based on an idea that the human visual system is 

highly adapted to extracting structural information from the 
images, which, in turn, can be defined as the attributes 
representing the structure of the objects in the scene, 
independent of the luminance and contrast [7]. SSIM is an 
objective measure of difference between a reference image 
(sometimes called original) and a modified image, and thus can 
be considered a quality metric of the second (processed) image. 

Two-dimensional SSIM 
Thus, given two spectral images, represented as vectors xi 

and xj, as inputs, SSIM produces an output on a 0 to 1 scale, 
where 0 means that the images are “not similar at all” and 1 
means “identical” [4]. The overall index is constituted of three 
parts: luminance, contrast and structure comparison, all three 
being relatively independent [7]. 

The overall measure is defined as follows [7]: 
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 (5) 
where �, �, � are non-negative parameters, used to adjust the 
importance of each of the components [6]. 

Luminance component l(xi,xj) is estimated as [7]: 
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where C1 is a constant that is included to avoid instability when 
the sum of the squares of means is approximately zero and � is 
the mean of the image [7]. 

Contrast component c(xi,xj) is given as [7]: 
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where C2 is a constant and � is the variance of the image [7]. 

The structure comparison component s(xi,xj) is defined as 
follows [7]: 
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where C3 is a small constant given to avoid instability and �xixj 
is the covariance of xi and xj. 

Constants C1, C2 and C3 can be computed as [7]: 

C1=(K1L)2; C2=(K2L)2; C3=C2/2 (9) 
where L is the dynamic range of pixel values and K1<<1, 
K2<<1 are two scalar constants. 

SSIM can be applied in a pointwise manner, but it is better 
to use the Gaussian weighting function w = {�i|i = 1,2,…,N}, 
normalized to unit sum (��i = 1), as the windowing approach. 
The local statistics are then computed using the weights w [7]. 
And the overall SSIM image quality measure is computed by 
averaging all of the local windows in the image. This is done 
due to a number of reasons. For one thing image statistics are 

on the most part highly spatially non-stationary, the same can 
be assumed of the distortions introduced into the image. 
Moreover, localized measures provide more information about 
the quality degradation [7]. 

Three-dimensional SSIM 
In the case of the three-dimensional SSIM measure the 

weighting function should be different, thus it is computed as 
follows [19]: 

( ) ( )2222222,, zyxAezyxh ++−= σπσπ  (10) 

Experiments 
Experiments were performed on spectral images of natural 

scenes from [20]. Two images – inlab2 and inlab5 were 
selected. Each image has the following dimensions: 256x256 in 
the spatial dimension and 31 components in the spectral 
dimension. Images were captured by a CCD (charge coupled 
device) camera in a 400-700 nm wavelength range at 10 nm 
intervals. 

First, both of the images were compressed using PCA 
(principal component analysis) down to two principal 
components. The color reproductions of original images and 
reconstructed after compression are given in Fig.1. 
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 (c)  (d) 
Figure 1. Color reproduction of spectral images inlab2 (a) original, (b) 
reconstruction after compression (PCA 2); inlab5 (c) original, (d) 
reconstruction after compression (PCA 2) 

Both of the images were multiplied afterwards by Spectral 
Luminous Efficiency function for photopic vision [17] and 
illumination factor [18]. The areas of color difference are 
clearly visible in the images, and concentrate primarily in red 
and brown regions. 

Then difference maps were computed using the three-
dimensional SSIM (Eq. 5, 10) proposed in this paper, and three 
previously proposed kernel similarity metrics [15]: polynomial 
kernel (Eq. 2), Gaussian radial basis kernel (Eq. 3) and 
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sigmoidal kernel (Eq. 4). For the latter three, similarity 
between images was computed on a pixelwise basis. The 
resulting maps are shown in Fig. 2. The level of the intensity in 
the maps corresponds to the similarity scale: from black “not 
similar at all” to white “identical”. 

  (a) (b) 
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  (e) (f) 

  (g) (h) 
Figure 2. Difference maps. Inlab2 (a,b,c,d); inlab5 (e,f,g,h). (a,e) 
polynomial kernel; (b,f) Gaussian radial basis function; (c,g) sigmoidal 
kernel and (d,h) three-dimensional-SSIM 

Looking at Fig. 2, it can be stated that the difference maps 
produced using the kernel measures present a similar to a 
certain extent result, while the output of the three-dimensional 
SSIM gives a slightly different result specifically far more 
regions in the image are shown to be different. 

Experimental Results 
The accuracy of kernel similarity measures and the 

extended SSIM was tested using Perceptual Image Distortion 
Map (PIDM) [21]. PIDM is an empirical measure of the 
distribution of errors in the images [21]. PIDM can be obtained 
either on a pixelwise basis, or locally, with different marker 
sizes and shapes.  

Five subjects were presented two sets of images, 
consisting of an original and a compressed image (Fig. 1). The 
users were asked to mark the regions that appeared different 
with a rectangular digital marker of size 4 by 4 pixels with 
different levels of gray-level intensity. Where black means “not 
similar at all” and white “identical”. The subjects were 
instructed to mark the whole image area. Fig. 3 presents the 
mean of all subject maps [11,12]. 

  (a) (b) 
Figure 3. Perceptual Image Distortion Map for images: (a) inlab2; (b) 
inlab5 

Fig. 3 clearly indicates that PIDM presents a practically 
excellent fit to the difference map calculated through the use of 
Gaussian RBF. Nevertheless, certain errors exist, which can be 
attributed to the fact that the marker size and shape caused 
several inaccuracies in stamping identical regions several times. 
Variance across the subjective judgments was equal to 0.0103, 
which is quite low and in turn means that subjects of the PIDM 
experiment were consistent in their estimations. 

However, the results obtained using the [11] SSIM show 
significant difference with the results obtained using the PIDM 
technique. 

Comparison of PIDM, SSIM and kernel metrics is given in 
Table 1, where each of the cells in first three columns present 
the mean deviation of the error maps, obtained through the use 
of polynomial, Gaussian RBF and sigmoidal kernels and the 
extended SSIM for each of the images, from the values of 
PIDM. Last column presents the value of the deviation of SSIM 
[7] error image from the PIDM. 

Table 1. Comparison of SSIM, kernel metrics and PIDM 
Polynomial Gaussian 

RBF 
Sigmoidal SSIM 

Inlab
2 

0.0499 0.0395 0.0551 0.1636 

Inlab
5 

0.0395 0.0291 0.0581 0.0986 

 
PIDM presents a full map of empirical distortion data, 

which can be used in the task of evaluation of the accuracy of 
the metrics presented. Thus, looking at Table 1 it can be 
concluded that the most accurate evaluation of the human 
response in the quality estimation task is obtained through the 



 

 

use of Gaussian RBF kernel, while the worst one with SSIM, 
although the deviation between these is not large. 

Taking into consideration all of the above it can be stated 
that the kernel similarity measures and SSIM are quality 
evaluation techniques that accurately predict the response of a 
human visual system in a distortion evaluation task. The values 
of these vary in the range from 0 to 1, representing the 
difference values from “not similar at all” to “identical”. From 
the point of view of the probability theory it can be stated that 
these measures presents a probability of the subject identifying 
a certain pixel as similar, which allows avoiding time and 
money consuming procedure of expert survey, and gives the 
possibility of computing the distortion values dynamically as 
the information is discarded from the image, as for example in 
a lossy compression task.  

Conclusions 
In this paper a novel technique of spectral image quality 

evaluation using Structural Similarity Measure was proposed. 
The algorithm, described in this paper, is an extension of a 
Structural Similarity Index (SSIM) [7] that incorporates 
spectral data [14]. SSIM is based upon an assumption that 
human visual system is highly adapted to extracting structural 
information from the images. The algorithm, given in this 
paper, computes a localized difference between the original and 
the distorted images. A gray-scale image distortion map is 
obtained as a result, where the intensity of each of the pixels 
corresponds to the value of the similarity between them, which, 
in turn, shows the areas where the visible distortions are in the 
image, and how large the distortions are. The overall index is 
constituted of three parts: luminance, contrast and structure 
comparison, all three being relatively independent [7]. As a 
windowing approach a three-dimensional Gaussian windowing 
function was used. The overall measure is obtained via 
averaging. 

SSIM [7] was tested against several images of natural 
scenes [20] (with spectral distortions introduced into the 
images) along with several previously proposed kernel 
similarity measures [15] and a Perceptual Image Distortion 
Map [21], where PIDM is an empirical measure of the 
distribution of errors in the images [21]. The choice of the 
kernel similarity measures for comparison is not incidental - 
these have previously proven to be effective in the task of 
spectral distortion evaluation [15]. It was shown in [15] that 
these mimic closely the response of the human visual system in 
a task of quality evaluation and can be considered among the 
best approaches to evaluation of spectral distortions introduced 
into the spectral images. The kernel similarity measures chosen 
are polynomial, Gaussian radial basis and sigmoidal kernels. 

The three-dimensional SSIM has already been tested 
against the two-dimensional conventional measure. The novel 
method has proven to be more efficient in the task of color and 
spectral image discrimination [14]. 

Comparing the results obtained in this work, it can be 
stated that SSIM performs slightly worse than the rest of the 
measures whilst Gaussian RBF gives a practically excellent fit 
to the human observer evaluation. Thus it can be concluded that 
performance of the SSIM is comparable to the rest of the 
measures in the task of spectral distortion evaluation. 
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