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Abstract 
 
Currently, at low bit rates, the MPEG compression coding can 
generate some impairments, which can affect the visual video 
quality. These artifacts such as the blocking, blurring and 
ringing effects can be exploited in order to design No Reference 
video quality metric. In this paper, we propose to use an 
importance map extracted from a region based attention model, 
to weight distortion measures derived from previous works [1]. 
This perceptual map is generated from the processed image, 
combining on the one hand,  the simulated results of  visual 
human cell responses and on the other hand,  the information of 
a spatial segmentation. The contribution of these weights is 
firstly evaluated, in the case of the quality assessment of JPEG 
and JPEG-2000 compressed images: this perceptual validation 
allows to assure the relevance of proposed distortion measures. 
Then, the performance of these combined measures is performed 
using a database composed of MPEG compressed videos. High 
correlation between the objective scores of the proposed metric 
and the subjective assessment ratings has been achieved. 

1. Introduction  
 
The new compression techniques have lead to the emergence of 
new services, such as digital video broadcasting or streaming. 
However, because of limitations of network bandwidth or 
storage capacity, these new technologies require a tradeoff 
between the perceptual quality of the video sequence and the 
quantity of information transmitted or saved. At low bit rates, 
the coding techniques such as MPEG or H26-X can create some 
impairments, which can cause an embarrassment for a human 
user. To evaluate the contribution brought by an efficient 
compression technique, the perceptual video quality must be 
assessed. 
 

The subjective assessment is the reference method to define 
the perceptual quality of an image or a video sequence. It 
consists of experiments, where a panel of human observers 
judges the visual quality of the input video. The Mean Opinion 
Scores (MOS) corresponding to each test input are the results 
issued from these subjective tests. The conditions of 
observations, the choice of observers, the test material, are 
specified in some recommendations [2-4], proposed by the 
International Telecommunication (ITU) or the Video Quality 
Expert Group (VQEG). However, these subjective tests are very 
long, expensive and difficult to practice. That is why, metrics 
are developed in parallel. 
 

Most of proposed video quality assessment approaches 
require the original video sequence as a reference. The most 
widely used objective image quality metrics is Peak Signal-to-
Noise Ratio (PSNR) and Mean Squared Error (MSE). However, 

the predicted scores do not well correlate with the subjective 
ratings: MSE and PSNR do not follow accurately the visual 
perception of human observers. Moreover, these metrics require 
the information contained in the original video, which is not 
possible for applications such as video broadcasting or 
streaming. 
 

For such technologies, the No Reference (NR) assessment 
seems to be more suitable. Generally, the NR metrics combine 
individual distortion measures into a single one, in order to 
predict quality [5]. Considering the MPEG coded videos, the 
three most annoying distortions are the blocking, blurring and 
ringing effects. In the literature, several metrics detecting and 
measuring blocking effect are proposed [6-10]. On the other 
hand, blurring and ringing NR metrics are less treated [11-13]. 
To assess blindly MPEG compressed videos, Cheng et al [14] 
propose a new distortion measure for each previously cited 
impairment. The pooling model is based on a linear combination 
of the three distortion measures and an additional feature, the bit 
rate. In [15], Caviedes et al. compute  blocking, ringing and 
corner outlining measures. These are first normalized 
individually, and then combined using Euclidean norm to obtain 
the predicted quality score. Farias et al [16] develop blocking, 
blurring and noise NR metrics and design models for overall 
annoyance of MPEG coded videos, using the Minkowski 
summation. However, none of the previously quoted models 
deals with the human visual system. 
 

The goal and the novelty of this paper are to design a new 
NR metric applied to MPEG compressed videos and including 
some properties of the Human Visual System (HVS). Distortion 
measures described in [17], are individually weighted by an 
importance map issued from a simple algorithm of attention 
model. The relevance of these artifact metrics is firstly validated 
on databases containing JPEG and JPEG-2000 compressed 
images. Then, a NR video quality metric based on the overall 
annoyance, is described. The paper is designed as follows: 
section 2 describes the structure of NR distortion measure, while 
section 3 presents the proposed NR video quality metric. The 
performance evaluations are discussed in section 4 and 
conclusions are given in section 5. 
 

2. NR Perceptual Distortion Measures 
 

2.1 Generation of the Importance Map 
 
The human observer selects Regions Of Interest (ROI), using 
two different mechanisms called bottom-up (signal-dependent) 
and top-down (task-dependent) controls. The proposed 
algorithm only incorporates the first mechanism. After a color 
transformation in the Krauskopf color space [18] (one 



 

 

Achromatic A and two Chromatic Cr1, Cr2 components), the 
model (figure 1) computes on the one hand, stimulus salience 
from achromatic contrast using a center-surround simulation 
[19] and on the other hand, spatial features [20], which are 
known to influence visual attention. 

Figure 1: Block diagram of the overall importance map generation 

To detect achromatic contrast, the behavior of the Classical 
Receptive Field (CRF) localized in the human visual cells, is 
emulated. The interactions between center-surround are 
computed as follows: 
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Where 0)( =xR if 0≤x otherwise xxR =)( . ),( σALPF  is a low-
pass filter,  defined by the convolution of the achromatic (A) 
image with a Gaussian kernel ( 4.0=Cσ and 4.2=Sσ ). 
  

These outputs are then weighted by a spatial importance 
map (IMS) generated by the block diagram illustrated by figure 
2. The algorithm begins by an unsupervised segmentation of 
color-texture regions [21] performed on A, Cr1 and Cr2 
components. The segmented image is then analyzed by a 
number of different spatial features (shape, location, size, 
background), known to influence the visual attention [20]. An 
importance feature map for each considered factor is generated. 
The feature maps are combined by a Minkowski summation, to 
produce the spatial Importance Map (IMS), which is used to 
weight results of Center-Surround interactions. 

Figure 2: Block diagram of spatial importance map (IMS) generation 
 
This weighting is performed for each pixel (m,n) and is 

expressed by: 
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Divisive inhibition is applied to these responses. The 
normalized response is given by:              
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Where r  is the response at a given location, b  is a saturation 
constant to prevent division by zero and h  is a Gaussian kernel. 
The normalized responses of on-center-off-surround and off-
center-on-surround receptive fields are then summed and 
normalized in order to obtain a two-dimensional map 
representing the conspicuous location.  
 
2.2 NR Distortion Measures 
 
The blocking artifact visually creates an artificial discontinuity 
between neighboring blocks in an image, caused by a severe and 
independent quantization of DCT coefficients of each block. 
This impairment can be amplified by the contrast between the 
neighboring blocks. Considering these facts, the local blocking 
measure LBM(k,l) for a block (k,l) can be formulated as 
follows: 
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where RH(k,l) (respectively RV(k,l)) defines the contrast 
reinforcement produced by the horizontal (respectively vertical) 
neighboring blocks and S(k,l), the quantization severity. 

 
For the block (k,l), the quantization severity is defined as: 
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Where STD(k,l) is the standard deviation of the block (k,l), and 
a, a constant. The horizontal contrast reinforcement is computed 
as follows: 
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Where A(k,l) (respectively A(k,l-1) and A(k,l+1)) is the mean 
value of the achromatic component for the block (k,l) 
(respectively block (k,l-1) and block (k,l+1)). The vertical 
contrast reinforcement is defined with the same formula, but 
considering the vertical neighboring blocks.  

 
The final blocking measure BlM is obtained using a 

Minkowski summation: 
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Where NBV (respectively NBH) represents the number of 
vertical (respectively horizontal) blocks in the processed image, 
IM  is the importance map described in the section 2.1. 

 
The blurring effects correspond to a total distortion on the 

whole image, characterized by an increase of the spread of edges 
and spatial details, while the ringing effect locally produces 
haloes and/or rings near sharp object edges in the image. The 
blurring measure (BlM) is formulated with a ratio using spatial 
information, pixel activity and weighting given by the 
Importance Map (IM) values:  
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Where IA(i,j) is the pixel (i,j) intensity of the Achromatic (A) 
component of size MxN pixels. AEdge is the binary image 
resulting from A edge detection. A’Edge is the AEdge  
complementary image. N(AEdge ) (respectively N(A’Edge )) is the 
number of non-null pixel values of AEdge (respectively A’Edge). 

 
Before measuring the ringing distortion, the areas around 

edges, called “ringing regions”, must be identified (ARinging Mask 

image). These are computed by using a binary “ringing mask” 
on the current image, resulting from the detection and the 
dilatation of strong edges. Then, a measure of ringing artifact is 
computed, defined by the ratio of regions activities of middle 
low and middle high frequencies, localized in these “ringing 
regions”. Each part of the defined ratio is locally weighted by 
the IM values: 
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Where IARM(i,j) is the pixel (i,j) intensity of ARinging Mask image of 
size MxN pixels. ARM Edge is the binary image resulting from  
ARinging Mask  image edge detection. A’RM Edge is the combination 
(XOR operator) of ARM Edge complementary binary image and 
“Ringing Mask” binary image. N(ARM Edge) (respectively 
N(A’RM Edge) or N(Ringing Mask)) is the number of non-null 
pixel values of ARM Edge  (respectively  A’RM Edge  or Ringing 
Mask) binary image. 

3. NR Video Quality Metric 
 
The proposed video quality metric is designed as follows: after a 
conversion in a perceptual color space of each image of the 
video sequence, the three distinct distortion measures of 
blocking (BMi), blurring (BlMi) and ringing (RMi) effects, 
described in the section 2.2, are computed.  Then, for each 
impairment, a temporal pooling using a Minkowski summation 
is performed. 
 

Then, the final predicted quality score (pMOS) for an entire 
video sequence can be obtained by a linear combination of 
temporal distortion measures: 

BMBlMaRMaBlMaBMaapMOS ..... 43210 ++++=  

RMBlMa ..5+                                    (13) 

Where ai, i=0..5 are the weights to be optimized. The three first 
terms of the final pooling model correspond to the distortion 
caused by each artifact, while the others define the combined 
actions of blocking/blurring and blurring/ringing effects. 

4. Experiments and Results 
 
In order to confirm the relevance of the three proposed 
distortion measures, a conjoint measure of blocking and blurring 
effects is validated using a database composed of JPEG 
compressed images. Indeed, the blurring and blocking artifacts 

are the two most annoying impairments engendered by JPEG 
coding, at low bit rates. On the other hand, the blurring and 
ringing effects are the visual distortions observed by human 
observers for JPEG-2000 compressed images. That is why, a 
conjoint measure of blurring and ringing is validated using a 
database containing JPEG-2000 compressed images. 
 
 Currently, VQEG proposes some statistical tools [22], in 
order to quantify the performance of a quality metric: the 
Pearson linear correlation and the Root Mean Square Error 
(RMSE) for the accuracy, the Spearman rank order correlation 
for the monotonicity, the outlier percentage for the consistency 
and the Kappa coefficient for the agreement. These statistical 
tests are performed comparing the predicted quality scores to the 
MOS of the input images. 
 

The image database we use in the experiments is from [23]. 
It consists of 29 original high-resolution 24-bits/pixel RGB color 
images (typically 768x512) and their JPEG and JPEG-2000 
compressed versions with different compressed ratios. The bit 
rates used for compression are in the range of 0.03 to 3.2 bits 
per pixel, chosen such that the resulting distribution of quality 
scores is roughly uniform over the entire range. About 25 human 
observers assess the quality of each image as “Bad”, “Poor”, 
“Fair”, and “Good” and “Excellent”. The raw scores for each 
subject are normalized by the mean and the variance of that 
subject and then scaled and shifted by the mean and the variance 
of the entire subject pool to the full range (1 to 100). Mean 
scores are then computed for each image after removing outliers.  

4.1 Validation of Blocking, Blurring Measures 
 
The conjoint measure (CM1) of blocking (BM) and blurring 
(BlM) effects consists of a linear combination of the first order 
terms of the blocking and blurring measures, plus the associated 
crossed term. Hence, the predicted quality score of an image 
may be written as: 

BlMBMaBlMaBMaaCM .... 32101 +++=             (14) 

Where ai, i=0..3 are the weights to be optimized. The JPEG 
image database is divided in two parts: one for training and the 
second one for the test (75 images). The table 1 presents the 
different results of proposed artifacts measures, while the table 2 
presents the results of distortions measures computed without 
the weights introduced by the importance map. 
 

 Pearson RMSE Spearman Kappa Outlier 
BM 0.935 0.610 0.937 0.696 0.133 
BlM 0.925 0.650 0.926 0.659 0.133 
CM1 0.964 0.482 0.948 0.749 0.053 

Table 1: Correlation results of the proposed blocking (BM), blurring (BlM) 
and conjoint (CM1) measures. 

 Pearson RMSE Spearman Kappa Outlier 
BM 0.91 0.865 0.92 0.448 0.12 
BlM 0.91 0.712 0.90 0.518 0.133 
CM1 0.927 0.795 0.919 0.519 0.12 

Table 2: Correlation results of the proposed blocking (BM), blurring (BlM) 
and conjoint (CM1) measures computed without the weights of the 
importance map. 



 

 

The correlation results issued from the separate use of each 
distortion measure allows to demonstrate the contribution of the 
importance map: the Pearson correlation obtained by the 
proposed weighted artifact measures indicates a better ability to 
predict subjective scores with a minimum average error than the 
same measures, neglecting the weighting. The monotonic 
relationship (Spearman rank-order correlation) is respected. The 
small obtained outlier ratio means that the proposed distortion 
metrics have a good ability to provide consistently accurate 
predictions for all types of compressed images and not fail 
excessively for a subset of images. The Kappa coefficient is a 
measure of agreement. Usually, a Kappa coefficient superior to 
0.4 is a good value; so the proposed artifact metrics obtain a 
good agreement between subjective and predicted scores. 
Comparing separately these tables, a second important fact 
appears: the proposed pooling model increases largely the 
prediction performances.  

4.2 Validation of Blurring, Ringing Measures 
 
The conjoint measure (CM2) of blurring (BlM) and ringing 
(RM) effects consists of a linear combination of the first order 
terms of the blurring and ringing measures, plus the associated 
crossed term. Hence, the predicted quality score of an image 
may be written as: 

RMBlMaRMaBlMaaCM .... 32102 +++=            (15) 

Where ai, i=0..3 are the weights to be optimized. The JPEG-
2000 image database is divided in two parts: one for training and 
the second one for the test (84 images). The table 3 presents the 
different results of proposed artifacts measures, while the table 4 
presents the results of distortions measures computed without 
the weights introduced by the importance map. 
 

 Pearson RMSE Spearman Kappa Outlier 
BlM 0.895 0.855 0.958 0.381 0.095 
RM 0.887 0.833 0.937 0.351 0.107 
CM2 0.918 0.692 0.944 0.668 0.059 

Table 3: Correlation results of the proposed blurring (BlM), ringing (RM) 
and conjoint (CM2) measures. 

 Pearson RMSE Spearman Kappa Outlier 
BlM 0.848 0.912 0.886 0.302 0.190 
RM 0.802 0.966 0.848 0.263 0.226 
CM2 0.866 0.819 0.903 0.60 0.142 

Table 4: Correlation results of the proposed blurring (BlM), ringing (RM) 
and conjoint (CM2) measures computed without the weights of the 
importance map. 

The comparison between these two tables allows to confirm 
the conclusions observed in section 4.1. Hence, both of these 
experimental validations demonstrate the relevance of the 
distortion measures proposed in this paper. 

4.3 Validation of the NR video quality metric 
 
The proposed video quality metric is tested using a video 
database. This set consists of 35 video sequences derived from 7 
original scenes. These clips contain a wide range of 
entertainment content from TV news to sport event. Each 
original video sequence is compressed using XVID coder (a free 

MPEG-4 coder) at five different bit rates ranging from 1.0 Mbps 
to 5 Mbps. Subjective ratings of the compressed videos are 
obtained using psychophysical experiment and following the 
recommendation ITU-T BT.500.10 [2]. In our experiment, the 
database is divided randomly into two sets: 3 training videos and 
4 testing videos, together with their compressed versions.  

 
The weights ai of the pooling model (section 3, equation 

13) are estimated from training videos using minimal mean 
squared error estimate between quality predictions and 
subjective scores. Then, the proposed trained quality metric is 
validated on the test database. The quality predictions resulting 
from this assessment are compared with scores given by human 
observers. The table 5 presents the correlation results of the 
proposed NR video quality metric (M1) described in section 3. 
The other results correspond to a metric (M2) based on the same 
distortion measures, but not taking into account the weights of 
the importance map. 
 

 Pearson RMSE Spearman Kappa Outlier 
M1 0.939 0.561 0.959 0.666 0.15 
M2 0.892 0.792 0.920 0.533 0.2 

Table 5: Correlation results of the NR video quality metric (M1) and a 
second one (M2), only based on the distortion measures (the weights of 
the importance map are neglected) 

The different performance metrics of VQEG 
recommendations are satisfied, which demonstrates the 
efficiency of the proposed metric, in the case of the video 
quality assessment. The integration of a perceptual importance 
map significantly increases the correlation between the predicted 
and subjective quality scores.   

5. Conclusions 
 
In this paper, we have presented a new reference free 

quality metric to assess the quality of MPEG compressed video 
sequences. The proposed method is based on the exploitation of 
separate distortion measures, specifically tuned to certain type of 
distortion (blocking, blurring and ringing). Each artifact 
measure is weighted by a perceptual importance map. This is 
generated by a combination of two distinct mechanisms: on the 
one hand, a stimulus salience from achromatic contrast using a 
center-surround simulation and on the other hand, spatial 
features (shape, size, background, location), which are known to 
influence visual attention. Each algorithm of distortion measure 
is previously validated with subjective ratings, which assures the 
relevance and the efficiency of the proposed approach. The 
experimental results, computed from a MPEG video database, 
confirm the efficiency of the NR video quality metric based on 
the combination of these impairment measures. 

References 
 
1. Barland, R. and A. Saadane. A New Reference Free Approach for 

the Quality Assessment of MPEG Coded Videos. in 7th 
International Conference Advanced Concepts for Intelligent Vision 
Systems (ACIVS). 2005. Antwerp, Belgium: Springer-Verlag 
GmbH. 

2. ITU-R Recommendation BT.500-10, Methodology for the 
Subjective Assessment of the Quality of Television Pictures. 2000, 
ITU: Geneva. 



 

 

3. ITU-T  Recommendation P.910, Subjective Video Quality 
Assessment Methods for Multimedia Application. 1999, ITU: 
Geneva, Switzerland. 

4. ITU-T Recommendation  P.920, Interactive Test Methods for 
Audiovisual Communications. 2000, ITU: Geneva, Switzerland. 

5. Farias, M., S.K. Mitra, et al. Perceptual contributions of blocky, 
blurry and noisy artifacts to overall annoyance. in International 
Conference on Multimedia and Expo. 2003. Balitmore, Maryland 
USA. 

6. Triantafyllidis, G., D. Tzovaras, et al., Blocking Artifact Detection 
and Reduction in Compressed Data. IEEE Transactions on Circuits 
and Systems for Video Technology, 2002. 12(10): p. 877-891. 

7. Vlachos, T., Detection of Blocking Artifacts in Compressed Video. 
Electronics Letters, 2000. 36(13): p. 1106-1108. 

8. Wu, H.R., Z. Yu, et al. Impairment metrics for MC/DPCM/DCT 
encoded digital video. in Picture Coding Symposium. 2001. Seoul, 
Korea. 

9. Wang, Z., A. Bovik, et al. Blind Measurement of Blocking Artifacts 
in Images. in IEEE International Conference on Image Processing. 
2000. 

10. Gao, W., C. Mermer, et al., A De-Blocking Algorithm and 
Blockiness Metric for Highly Compressed Images. IEEE 
Transactions on Circuits and Systems for Video Technology, 2002. 
12(12): p. 1150-1159. 

11. Marichal, X., W.-Y. ma, et al. Blur Determination in the 
Compressed Domain Using DCT Information. in IEEE 
International Conference on Image Processing. 1999. Kobe, Japan. 

12. Marziliano, P., F. Dufaux, et al. Perceptual metrics for JPEG2000 
Coded Images. in MDWESPIC. 2003. 

13. Caviedes, J. and S. Gurbuz. No-Reference Sharpness Metric Based 
on Local Edge Kurtosis. in IEEE International Conference on 
Image Processing. 2002. Rochestern, New York, USA. 

14. Cheng, H. and J. Lubin, Reference free objective quality metrics for 
MPEG coded video. Visual Communications and Image 
Processing, 2003. 

15. Caviedes, J. and J. Jung. No-Reference Metric for a Video Quality 
Control Loop. in World Multi-Conference on Systems Cybernetics 
and Informatics Broadcasting Convention. 2001. 

16. Farias, M. and S.K. Mitra. No Reference Video Quality Metric 
Based on Artifact Measurements. in International Conference on 
Image Processing. 2005. Genoa, Italy. 

17. Barland, R. and A. Saadane. A Reference Free Quality Metric for 
Compressed Images. in Second International Workshop on Video 
Processing and Quality Metrics for Consumer Electronics. 2006. 
Scottsdale, Arizona, USA. 

18. Williams, D.R., J. Krauskopf, et al., Cardinal Directions of Color 
Space. Vision Research, 1982. 22: p. 1123-1131. 

19. Parkhurst, D. and E. Niebur, Texture Contrast Attracts Overt Visual 
Attention in Natural Scenes. European Journal of Neuroscience, 
2004. 19: p. 783-789. 

20. Osberger, W. and A.M. Rohaly. Automatic Detection of Regions of 
Interest in Complex Video Sequences. in SPIE Human Vision and 
Electronic Imaging. 2001. San Jose, California, USA. 

21. Deng, Y. and B.S. Manjunath, Unsupervised Segmentation of 
Color-Texture Regions in Images and Video. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2001. 23(8): p. 800-810. 

22. Rohaly, A.M., P. Corriveau, et al. Video Quality Experts Group: 
Current Results and Future Directions. in Proceedings of Visual 
Communications and Images Processing. 2000. 

23. Sheikh, H., Z. Wang, et al., LIVE Image Quality Assessment 
Database. http://live.ece.utexas.edu/research/quality. 

 

Author Biography 
 

Remi Barland is a PhD student in image processing from the 
University of Nantes (France). He obtained in September 2003, the 
engineering degree in computer sciences (Multimedia and Vision). 

Teaching assistant at the University of Nantes, its current centers of 
research are the quality assessment without reference for image and 
video processing. 

 




