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Abstract 
Many kinds of color imaging systems have been developed 

and equipped with an image processing technique. Most 
accurate imaging systems are implemented if spectral systems 
and spectral image processing are utilized. In this paper, the 
machine learning techniques in spectral images that extend 
traditional image processing methods are considered. 
Advantages and drawbacks of learning methods in various 
applications are described and discussed. 

Introduction  
The development of a high quality color imaging system is 

required in telemedicine, network museum, network shopping, 
electronic money, digital archives, mobile phones with a digital 
camera, digital TV, digital copy, digital camera and electronic 
paper. However, the images acquired by color imaging systems 
based on three channels are not very accurate, and depend on 
the illumination and system characteristics. To avoid 
conventional system problems and to provide high quality 
imaging systems the spectral imaging systems are introduced. 
Also, these systems can incorporate the color appearance 
characteristics of the human visual system [1].  

On the other hand, new image acquisition devices and 
imaging systems require advanced image analysis and image 
processing algorithms to be used in the applications. In this 
case, the machine learning algorithms can help to solve the 
problems arising in different application areas. Recently, many 
advanced machine learning techniques using neural networks, 
support vector machines, Bayesian approaches have been 
introduced and combined in the software libraries that are 
convenient for the use [2]. Building the image processing 
methods using the ready-made machine learning algorithms one 
can get theoretically well-founded algorithms, a unified 
workflow for current and future studies, and a rich set of 
methods that provide flexibility for application-oriented 
research. 

Many of the learning methods are density models based on 
a likelihood that it is important for recognition, and convenient 
for comparison with other methods. They include regression, 
clustering and pattern recognition methods. The learning 
algorithms are easy to use for incorporating the data 
nonlinearity, when the data dimensionality is reduced or 
spectral reflectance is estimated, and for data clustering, for 
example, when a separation of data into the body-reflection and 
highlight clusters is required. Therefore, the learning techniques 
are discussed in the following fields 

• An imaging system for estimating spectral 
reflectance of paint. 

• A dimensionality reduction technique in spectral 
images. 

• Color mining and colorization. 
• Highlight removal in endoscope images. 
• Spectral image watermarking using ICA. 

  

An Imaging System for Estimating Spectral 
Reflectance of Paint 

Many techniques including learning methods devoted to 
estimating the spectral reflectance have been proposed [3-7]. 
The comparison of different methods is useful to provide 
researchers with guidelines when new applications are 
developed. 

In our previous study, we considered an imaging system 
for accurately estimating the spectral reflectance of art 
paintings [8]. We statistically analyzed the reflectance spectra 
of the color-patch sets of oil and watercolor paintings without 
noise characteristics, developed three machine-learning based 
methods and compared them with three traditional methods 
using a synthetic data set and real color-patch sets. The 
traditional methods are linear estimators based on low-
dimensional principal component analysis (PCA) 
approximation and Wiener estimation, and a nonlinear 
estimator based on multiple regression approximation. The 
machine learning methods extend the traditional methods for 
estimating a nonlinear data structure. They include: a method 
based on nonlinear principal component analysis (regressive 
PCA), a method based on regression analysis (radial basis 
function (RBF) regression) and a method using a piece-wise 
linear Wiener estimation. The accuracy of spectral estimation 
using these methods is evaluated in this study.   

For statistical analysis of the spectral reflectance of 
paintings five sets of color patches of oil or watercolor paint are 
used as follows: set A, 336 patches of paint (reflectance of 
paint); set B, 60  patches of paint (Turner acryl gouache); set C,  
60 patches of paint (Turner golden acrylics); set D, 91 patches 
of paint (Kusakabe oil paint) and set E, 18 patches of  paint 
(Kusakabe haiban). All sets were extracted from the standard 
object color spectral database constructed by the Spectral 
Characteristic Database Construction Working Group [9]. 
These sets have a spectral range of 400-700 nm and samples are 
evenly taken at 10 nm. Set A is used for training the algorithms 
and sets B-E are used for prediction of the spectral reflectance. 
The spectral transmittance characteristics are provided by the 
five separation filters used in a CCD camera. The filters are 
commercial (BPB-42, SP-9, BPB-50, BPB-55 and BPB-60). 
Two measurements are utilized for estimation accuracy, 
spectral color difference and colorimetric color difference (Fig. 
1). 
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(right bar), 3 is the multiple regression estimation (left bar) and regression 
estimation (right bar). For each set (A-E) the average RMSE value is 
measured and then a maximum of these values is given as a bar. For 
each set (A-E) the maximum CIE ∆E94 value is measured and then a 
maximum of these values is given as a bar. The learning based methods 
have slightly smaller RMSE value. The technique based on regression has 
the best ∆E94 value while the traditional methods have better color 
differences in two other cases. 

In general, the traditional methods have better average 
color differences. For example, the overall average ΔE94 
measure is 0.42 for the multiple regression method versus 0.6 
for the regression method. From this viewpoint these methods 
seem to be more preferable than the learning methods. This can 
be explained in the following way. In this study a 
dimensionality of the subspace is defined by the five given 
filters. Though the subspace is not optimal (close to optimal) its 
dimensionality is rather high whereas we can expect that the 
dimensionality of the nonlinear subspace where the learning 
methods are most suitable is low. Recently, it was shown that 
for reflectance spectra the dimensionality of the nonlinear 
subspace is approximately three [10]. We will consider this 
problem in our future study. 

Thus, we synthesized a spectral color imaging system 
implementing several estimation methods and analyzed the 
possibility for accurately estimating the reflectance spectra 
using the presented techniques.  

A Dimensionality Reduction Technique in 
Spectral Images 

It is very useful in spectral image processing (low- and 
high-pass filtering, wavelet transforms etc.) to apply a 
preprocessing step by reducing the dimensionality of an image 
containing dozens or hundreds of components to several 
components. In convenient systems the PCA technique is 
usually utilized for this purpose because it saves computational 
time and memory. To make this algorithm more efficient a 
technique that incorporates not only information from the 
retained principal components but also information from the 
higher-order (weak) principal components (PCs) without 
changing the number of principal components is required. The 
possible solution to the problem is to use a learning technique 
incorporating the nonlinearity of data.  

In our previous paper we analyzed three nonlinear 
dimensionality reduction techniques and a standard principal 
component analysis (PCA) technique [11]. The nonlinear 
techniques included locally linear embedding (LLE), ISOMAP 
and regressive PCA (RPCA) [12-14]. The LLE and ISOMAP 
algorithms are modified to provide inverse parametrical 
mapping (from the subspace to the input space) used in image 

reconstruction. In this study a number of PCs (or embedded 
components) is used as a free parameter. 

The study is divided into two parts. First, analysis is done 
for a low-resolution spectral image since the LLE and ISOMAP 
techniques are computationally demanding and cannot be used 
for a large data set. The size of the original low-resolution 
image fruits and flowers (taken from the toolbox of the 
University of Joensuu) is 120x160x81 (the third dimension is 
spectral).  The spectral components are evenly taken in the 
range 380-780 nm. The image is down sampled to get a size 
48x64x81 to make its size appropriate for working with LLE 
and ISOMAP. The low-resolution test image is shown in Fig. 2.  

 

 
Fig. 2.  RGB-representation of the low-resolution image (fruits and flowers) 
used in the test. 

The average S-CIELAB ΔE measure [15] for the test 
image depending on a number of PCs is shown in Fig. 3. 

Based on analysis one can conclude that the LLE 
algorithm lacks in compact representation of spectral images. 
For the LLE algorithm it is difficult to map the complicated 
image including several color regions to the proper subspace. 
The ISOMAP algorithm produces better visual results for the 
first PC and the first two PCs than PCA while the reconstructed 
images using PCA for the first three and four PCs are better 
than the ISOMAP result.   

In general, for LLE and ISOMAP the data must be densely 
populated in the low-dimensional space [16]. The existence of 
several color regions in the low-resolution image prevents the 
correct learning of the data structure by LLE and ISOMAP. The 
PCA method produces a relatively good result because the 
probability density function (pdf) of the spectral image 
presented by several color regions is close to the Gaussian pdf 
according to the Central Limit Theorem. This makes the data 
structure more linear. The RPCA technique is superior to PCA 
when one to three principal components are used and is slightly 
better for four PCs.  
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Fig. 3. The average S-CIELAB ∆E measure depending on a number of 
retained PCs. The bars from first to fourth for each number of PCs are 
given for LLE, ISOMAP, PCA and RPCA, respectively. ISOMAP gives 
good results for the first and first two components while RPCA is the best 
in most cases. When the number of used components is increased the 
difference between PCA and RPCA results is reduced.  



 

 

The second experiment is conducted with a set of high-
resolution images using standard PCA and regressive PCA. 
Here we present a part of our study with four images: p1 
(Chart), p2 (Japanese Paint), p3 (Standard Image) and p4 
(Fruit) (taken from the toolbox of the Chiba University). The 
size of high resolution images acquired with the five-band 
camera is 508x764. Fig. 4 illustrates RGB-representation of the 
high-resolution images p1-p4  used in the test. 

This study shows that the PCA and RPCA methods are 
computationally efficient to work with high-resolution images 
(a computational time when three PCs are used is 3.3 s (PCA) 
and 135 s (RPCA)). In the case of the high-resolution images 
the compression ratio for RPCA is close to that for PCA which 
is 1.66 for three PCs (for the low-resolution image the 
compression ratio is 26 (PCA) and 23 (RPCA) for three PCs).  

RPCA gives visual improvement and better color and 
spectral difference for high resolution images in comparison 
with PCA. Examples are given for the spectral difference (Fig. 
5), for the color difference (three PCs) (Fig. 6) and for the 
visual comparison (Fig. 7). The color difference results for PCA 
and RPCA are comparable in the case of four PCs. In this case 
the average S-CIELAB ΔE measure is 0.64/0.57 (p1), 0.28/0.28 
(p2), 1.03/0.8 (p3) and 0.91/0.95 (p4), where the first value is 
given for PCA and the second value for RPCA. This means that 
for the test images a dimensionality of nonlinear subspaces is 
approximately three. 

Based on analysis of low-resolution and high-resolution 
images we believe that regardless of data linearization, that 
holds for complicated images, the low-degree residual 
nonlinearity still exists. RPCA incorporates this nonlinearity by 
approximating weak PCs. We conclude that the RPCA 
technique reproduces colors more accurately than PCA, 
requires approximately the same memory as PCA in 
applications with high-resolution images and is relatively fast. 

 

 

Fig. 4. RGB-representation of high-resolution images used in the test: p1 
(Chart), p2 (Japanese Paint), p3 (Standard Image) and p4 (Fruit). 
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Fig. 5. The RMSE for the part of p1 (a colorchecker placed in the left-
bottom corner of p1). The curves for PCA and RPCA (three PCs are used) 
are marked by triangles and diamonds, respectively. The spatial position 
of each graphic corresponds to the spatial position of the colorchecker 
patch where the measurement is made. The image component indices (a 
horizontal coordinate) are consequently located in accordance with the 
channel spectral characteristics from short wavelengths to long 
wavelengths.  For RPCA a RMSE maximum and RMSE values in most 
cases are smaller to values given by PCA. Note: the values of a vertical 
coordinate must be multiplied by the scaling factor 10-2. 

Color Mining and Colorization 
Colorization is a computerized process where color is 

added to the gray-level image or movie. Colorization requires 
human participation that makes colorization very complicated, 
expensive and time consuming. There are several colorization 
techniques where color is transferred from the source (color 
image) to the target (gray-level image) if the intensities (or 
other achromatic information) of neighboring pixels match 
between the images. To reduce a computational time only a 
reduced number of pixels of a color region participate in 
matching [17-19].  
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Fig. 6. The average S-CIELAB ∆E measure for images p1-p4 
corresponding to horizontal coordinate values 1-4, respectively. Three 
PCs are used. The left bar is given for PCA and the right bar is given for 
RPCA. 



 

 

 

Fig. 7. RGB-representation of the scaled image part (p2). PCA 
reconstruction (left) and RPCA reconstruction (right). The right image has 
more reddish flowers close to the original. Three PCs are used. 

In our previous paper we introduced nonlinear mapping 
between the components based on color mining that 
characterizes the colors of colored objects in spectral images 
[20]. We propose to pick a set of new colors from the real full-
spectral image by reducing the image dimensionality and using 
nonlinear parametric mapping to the first principal component. 
Then, the gray level image replacing the first principal 
component is colored by reconstructing a synthetic full-spectral 
image. For parametric mapping, two techniques: a mixture of 
probabilistic principal component analyzers (MPPCA) and 
regressive PCA (RPCA) are utilized [21], [14].  

Fig. 8 and Fig. 9 show an example of color mining for the 
masked region. The region represents a color object where the 
dichromatic reflection model is relevant. The first two PCs of 
the PCA represent the data very accurately. However, the 
intrinsic dimensionality of the data is less than two.  This is 
discovered by the learning based methods including a mixture 
of probabilistic PCA and regressive PCA.  Fig. 9 shows the S-
CIELAB ∆E measure depending on a number of retained PCs. 

 

 

Fig. 8. RGB-representation of the spectral image and a region mask. The 
image size is 131x141 pixels with 81 components evenly  taken in the 
range of 380-780 nm. 
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Fig. 9. The average S-CIELAB ∆E depending on a number of PCs for 
PCA, MPPCA and RPCA. The PCA technique requires two PCs to 

represent the region while MPPCA and RPCA show that the data 
dimensionality is one. 

The colorization procedure reduces the dimensionality of 
the spectral image and using learnt color information colors a 
gray-level image. We believe that this study makes the 
colorization relatively simple providing a good generalization 
of color because all available pixels of the region are involved 
in the analysis. 

Highlight Removal in Endoscope images 
The highlight removal technique is especially important in 

medicine for analysis of endoscope images. Highlights are an 
undesirable factor when medicine images are merged together 
to obtain a mosaic image.  

An efficient algorithm for highlight removal in endoscope 
images is proposed in the study [22]. According to the analysis 
the endoscope images are presented by several kinds of regions 
including a shade surrounding highlight. The dichromatic 
reflection model is not valid for the whole spectral image 
because the color of the shade significantly varies in 
comparison with the background pixels and does not have a 
smoothed transition with the color of the body-reflection 
cluster. However it is possible to segment the image using 
machine learning algorithms and extract only the body-
reflection and highlight regions for which the dichromatic 
reflection model is relevant and then the highlight removal 
technique is applied. 

The algorithm is based on the Gaussian mixture model 
(GMM) used for fitting the data, clustering and feature analysis 
to determine the body-reflection and highlight regions. The 
proposed algorithm removes the highlight in the endoscope 
image and improves color reproduction of the entire image. 
Though the algorithm performance depends on data we believe 
that the considered method can be useful in medical 
applications where mosaic images are required. 

Spectral Image Watermarking Using ICA 
Finally we present continued research on image 

watermarking. The digital watermark technique has been 
developed quickly during the last few years and applied to 
protect the copyright of digital image. The digital watermark is 
embedded in the source image and should be robust against 
attacks trying to remove the watermark. 

The purpose of this study is to embed the watermark in a 
spectral image and then to extract it from the image. To enforce 
the security we introduce also the key image. Three images 
including a source image, a key image and a watermark are 
spectral (Fig. 10). The image size is 130x71 pixels with 81 
components evenly taken in the range 380-780 nm. For 
embedding we mix the images with different coefficients and 
then for extracting the watermark the Fast ICA algorithm is 
utilized [23]. If the Fast ICA algorithm is used in analysis of the 
spectral images then a preprocessing procedure should be 
implemented. The preprocessing procedure involves two steps 
the dimensionality reduction using PCA and high-pass filtering. 
PCA is needed to accelerate computing and to avoid 
overlearning. In general, an overlearning problem prevents 
finding independent components in the image. Overlearning in 
ICA relates to a data complexity problem and is observed when 
the statistical data model has many parameters in respect to the 
available sample size.  The high-pass filtering removes 
correlation between images and makes the source images more 



 

 

independent. Fig. 10 shows the results on extracting the 
watermark. 

This study seems to be promising because we not only 
extract the spectral watermark from spectral images but also 
reproduce its color. The method is robust against attacks 
including low and high-pass filtering. The used spectral images 
were acquired from color reproductions and in a future study 
we will use real spectral images.  

Conclusion 
We considered the learning techniques in the following 

applications:  an imaging system for estimating spectral 
reflectance of paint, a dimensionality reduction technique in 
spectral images, color mining and colorization, highlight 
removal in spectral images and spectral image watermarking 
using ICA. We did not consider the non-negative techniques 
(non-negative matrix factorization and non-negative 
independent component analysis) which can be found 
elsewhere (for example, in Reference [24]). 

We think that in practice for estimating spectral 
reflectance the learning technique can be used without 
limitations because the size of the training set is usually less 
than several thousands. For spectral image analysis involving 
dimensionality reduction the use of the learning technique 
(except regressive PCA) is usually restricted due to 
computational time and memory demands.   
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