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Abstract
This paper is concerned with the study and description of

light scattering in turbid material such as paper. We present a
new modeling approach, which is based on the transport theory.
A statistical description for the scattering and absorption behav-
ior inside the material is used to obtain spatial distributions of
wavelength dependent photon number density and fluxes. Op-
posed to previous methods, the new approach can account for
complex multi-point statistics of the material properties in an effi-
cient and general way. This is achieved by solving a model equa-
tion for photon number density and propagation direction dis-
tribution. The present method is able to account for the spacial
distribution of specific, wavelength dependent scattering and ab-
sorption characteristics. Thereby, it offers a general framework
which allows to predict for example the appearance of colors in
halftone prints.

Introduction
The study of light scattering in paper is of major con-

cern and importance for the description of phenomena related

to halftone printing. However, often it is not possible to predict

or explain experimental data with existing models. There are

two fundamentally different approaches [2, 3]. The first one, the

analytical theory [2, 4, 9], is rigorous, but computationally very

expensive. More adequate for practical problems [2] is the sec-

ond approach, the transport theory [1], which was developed on

a heuristic basis dealing with transport of energy through turbid

media directly [10].

In this paper we present a new modeling approach, which

is based on the transport theory. A statistical description for the

scattering and absorption behavior inside the paper is used to ob-

tain spatial distributions of wavelength dependent photon number

density and fluxes. Opposed to previous methods, our approach

allows to account for the typically complex paper structure and

multi-point statistics in a general, but still efficient way. This

is achieved by solving a modeled evolution equation for photon

number density and joint probability density function (PDF) of

propagation direction. In order to solve the high dimensional

PDF equation efficiently, a particle method is employed. In this

framework, each computational particle represents a number of

photons indicated by a weight. Additional particle properties

are position in physical space, propagation direction and wave-

length. To account for absorption, the particle weight decreases

with time. We first describe the transport equation for the photon

density and direction distribution. Then a particle solution al-

gorithm is devised. With numerical results we demonstrate that

the method shows the correct tendencies in terms of absorption

coefficient and correlation length scales in the paper. Finally,

we discuss how the new model can be extended to account for

more specific scattering behavior in a very general way. Since

the model honors wavelength dependency and spatial distribution

of the coefficients, it can be used to predict the effect of optical

dot gain on the colors in halftone prints. Moreover, it is interest-

ing that in the 1D case our model is consistent with the existing

random walk [7, 8] and Kubelka and Munk [5, 6] models.

PDF Transport Equation
First, a brief outline of the transport theory is given. The

most important quantity considered is the radiance, I(xxx,sss), which

is the average energy flux per solid angle at location xxx in direction

sss. The change of I(xxx,sss) experienced along the path from xxx in

direction sss is expressed by the differential equation

dI(xxx,sss)
ds

=−γt I(xxx,sss)+
γt

4π

∫
4π

p(sss,sss′)I(xxx,sss′)dω ′, (1)

where γt is the extinction coefficient (which is composed of the

absorption and scattering coefficients γa and γs, respectively),

p(sss,sss′) is the phase function describing the part of photon flux

scattered from the direction sss′ into the direction sss, and dω ′ is the

elementary solid angle about the direction sss. Knowing the pho-

ton number density, ρ , and the PDF, fŝss(sss;xxx, t), of photon prop-

agation direction, sss, one can extract all statistics of interest (sss is

the sample space variable of ŝss). The objective of the following

modeling approach is to compute ρ and fŝss(sss;xxx, t) by solving the

PDF evolution equation

∂ρ fŝss
∂ t

+
∂

∂xi

{〈
dx̂i

dt

∣∣∣sss;xxx, t
〉

ρ fŝss

}

+
∂

∂ si

{〈
dŝi

dt

∣∣∣sss;xxx, t
〉

ρ fŝss

}
=−ρ fŝss

τa
,

(2)

where c is the speed of light and following the Einstein summa-

tion convention we sum over the index i. The first term describes

the change of photon number density in the xxx-sss-space with time,

the second term accounts for transport in physical space, the third

term for evolution in direction sample space, and the term on

the right-hand side for absorption. The conditional expectations,

〈dŝi/dt|sss;xxx, t〉 and 〈dŝi/dt|sss;xxx, t〉, require modeling. Note that in

general one is only interested in a steady state solution of Eq. (2).

Stochastic Model for Photon Scattering
We propose a modeling framework, which is based on solv-

ing Eq. (2). A particular difficulty is the high dimensional xxx-sss-

space, in which ρ(xxx) fŝss(sss;xxx, t) evolves. Therefore, and due to an

easier approach to modeling photon propagation, a Lagrangian

particle method is employed. In fact, such Monte Carlo particle



methods are widely used in computational physics to solve high-

dimensional problems, since the computational cost increases

only linearly with the number of dimensions.

Particle Method
In our framework, we consider a cloud of computational

particles in the xxx-sss-space such that ρ(xxx) fŝss(sss;xxx, t) is represented

by the particle number density. The computational particles have

a weight w∗, a position x̂xx∗ in physical space, a propagation direc-

tion ŝss∗ (position in sss-space) and possibly further properties, e.g.

a wavelength. Position, x̂xx∗n+1

, and propagation direction, ŝss∗
n+1

,

at the new time tn+1 = tn + dt are modeled in terms of x̂xx∗n
and

ŝss∗
n

at the previous time tn. Moreover, the weight w∗ is modified

depending on the absorption time scale τa as

w∗
n+1

= w∗
n
e−dt/τa . (3)

Scattering behavior as well as absorption time scale depend on

the material properties and are therefore position dependent.

Next, we describe how x̂xx∗n+1

and ŝss∗
n+1

are modeled as functions

of x̂xx∗n
and ŝss∗

n
, while we assume that the medium is isotropic. We

consider a local, orthogonal coordinate system with its origin at

x̂xx∗n
and the unit vectors eee1 = ŝss∗

n
, eee2⊥ eee1 and eee3 = eee1×eee2. In this

coordinate system, the new particle location and propagation di-

rection, x̂xx′∗n+1

and ŝss′∗
n+1

, are determined by random lookup from

pre-computed evolution tables. These tables depend on wave-

length, material properties (and therefore on the position x̂xx∗n
) and

time increment dt. Each entry represents an equally possible new

state (x̂xx∗n+1

, ŝss∗
n+1

) and the new particle properties in the reference

coordinate system are obtained by the transformations

x̂xx∗
n+1

= x̂xx∗
n
+TTT · x̂xx′∗n+1

(4)

and

ŝss∗
n+1

= TTT · ŝss′∗n+1

(5)

using the transformation matrix

TTT =

⎡
⎢⎣

e1
1 e2

1 e3
1

e1
2 e2

2 e3
2

e1
3 e2

3 e3
3

⎤
⎥⎦ . (6)

At the beginning of each time step, the boundary conditions are

set by populating the border regions of the domain Ω with new

particles having the properties x̂xx∗n
and ŝss∗

n
. Then, for each par-

ticle the evolution table corresponding to the position x̂xx∗n
and

a uniformly distributed random integer k ∈ {1, ...,m} are deter-

mined, where m is the number of table entries (x̂xx′∗n+1

, ŝss′∗
n+1

). The

local orthogonal coordinate system is obtained by setting the first

unit vector eee1 equal to ŝss∗
n
, choosing an arbitrary second unit vec-

tor eee2 ⊥ eee1 and computing the third unit vector as eee3 = eee1× eee2.

Finally, the new particle position and propagation direction are

obtained by the transformations (4) and (5) and the change of the

weight w∗ due to absorption is computed according to Eq. (3).

At the end of the time step, all particles outside the domain Ω
are deleted and the statistics of interest, φφφ , is extracted from the

particle field. In order to obtain smooth results, exponentially

weighted moving time averaging, i.e.

ΦΦΦn+1 = µΦΦΦn +(1−µ)φφφ , (7)

is applied, where φφφ and ΦΦΦ represent the instantaneous and the av-

eraged statistics. Note that the smoothness of ΦΦΦ depends on the

memory factor µ . Moreover, nmax has to be large enough to guar-

antee that the solution becomes statistically stationary. There ex-

ist various techniques to extract statistics of interest from a par-

ticle field. Here, we simply sample over small grid cells Ωi. For

example, the radiant energy flux rate is estimated as

ψ i ≈ cêp

|Ωi| ∑
∀ particles∈Ωi

{w∗} (8)

and the average energy flow per unit area as

FFFi ≈ cêp

|Ωi| ∑
∀ particles∈Ωi

{w∗ŝss∗} . (9)

Alternatively one can estimate such quantities at grid nodes us-

ing kernel functions, but this is not relevant for the modeling ap-

proach and is not further discussed here. Next, the computation

of the evolution tables is explained.

Evolution Tables
The entries in the evolution tables represent possible com-

binations of photon position x̂xx′∗n+1

= x̂xx′∗(t = dt) and propaga-

tion direction ŝss′∗
n+1

= ŝss′∗(t = dt) at time dt conditioned on

x̂xx′∗n
= x̂xx′∗(t = 0) = (0,0,0)T and ŝss′∗

n
= ŝss′∗(t = 0) = (1,0,0)T .

First, the time t is set to zero and a particle with initial position

x̂xx′∗ = (0,0,0)T and direction ŝss′∗ = (1,0,0)T is created. These

properties are then modified by a time-stepping scheme, in which

the time is incremented until t = dt. At the beginning of each

iteration, the time until the next scattering event occurs is de-

termined by a random variable τ with specified PDF fτ . Then,

the new position x̂xx′∗ = x̂xx′∗+min(τ,dt− t)ŝss′∗c is computed and if

t +τ > dt the iteration loop terminates. Otherwise, the deflection

angle due to scattering is determined by a random variable γ with

specified PDF fγ . The new propagation direction in the orthog-

onal coordinate system with the unit vectors eee1 = ŝss′∗, eee2 ⊥ eee1

and eee3 = eee1× eee2 is ŝss′′∗ = (cosγ,sinγ sinβ ,sinγ cosβ )T , where

β ∈ [0,2π] is a uniformly distributed random variable. At the

end of the iteration, the new direction in the reference system is

computed by the transformation ŝss′∗ = ŝ′′∗1 eee1 + ŝ′′∗2 eee2 + ŝ′′∗3 eee3. Fi-

nally, once the iteration loop has terminated, the entry (x̂xx′∗, ŝss′∗)
is added to the table. Two illustrative examples of such evolution

tables with size m = 10′000 are shown in Figs. 1a and 2a, where

the positions of all entries can be seen. The corresponding cu-

mulated density functions (CDFs) of the single scattering angle

γ are depicted in the figures below, i.e. in Figs. 1b and 2b. In

both cases fτ = −e−dt/τ/τ with τ = 0.01L/c and dt = 0.01L/c
were used, where L is a reference length scale, e.g. the size of the

domain. Next, the limiting case of 1D scattering is discussed.

Kubelka and Munk and 1D Random Walk
We show that the evolution tables can be constructed such

that the particle method presented above becomes identical with

the 1D random walk model devised by Simon [8, 7]. In that

model, computational particles located at the nodes of a grid

with mesh width h are considered. During each iteration n, each

particle switches its propagation direction ŝ∗ ∈ {−1,1} with the

scattering probability q and changes its position according to

x̂∗n+1

= x̂∗n
+ hŝ∗n

. It is straight forward to see that our particle

method becomes equivalent to this 1D random walk approach, if

the evolution table
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Figure 1. (a): scatter plot showing all table entry positions for an arbitrarily

given γ distribution; (b): the corresponding CDF of γ.

entry (x̂xx′∗, ŝss′∗)

1 (eee1c ∆t,−eee1)
...

...

m’ (eee1c ∆t,−eee1)

m’+1 (eee1c ∆t, eee1)
...

...

m (eee1c ∆t, eee1)

is used, which is based on the time step size ∆t. Scattering prob-

ability and 1D mesh size are q = m′/m and h = c∆t, respectively.

A further requirement for exact equivalence is that the initial par-

ticle locations are discrete positions xxx = ic∆teee1, where i can be

any integer.

It can be shown that the particle method with this evolu-

tion table also corresponds to the original model by Kubelka and

Munk [5]. For the one-dimensional model one obtains the fol-

lowing relation with the Kubelka-Munk coefficients

S = m∆t/(m′ c), (10)

K = 1/(τa c). (11)
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Figure 2. (a): scatter plot showing all table entry positions for isotropic

scattering; (b): the CDF for isotropic scattering.

Numerical Experiments
The following numerical experiments shall demonstrate

how the photon distribution is influenced by the correlation struc-

ture of the material. Using the particle method allows to simulate

the scattered light in arbitrary configurations. In Fig. 3 we illus-

trate contour plots of the logarithm of the particle distribution

reflected from two different scattering and absorbing media. The

normalized thickness of the media was set in both cases to 1L and

the scattering coefficient to τ = 0.333L. In order to illustrate the

results of different characteristics, the absorption coefficient was

set in part (a) to τa = 0.167L and in part (b) to τa = 1.5L. In both

simulations, the incident light beam was directed perpendicularly

to the scattering substrate. Changing the angle of incidence to 45

degrees deflects the backscattered light from the incident axis as

expected, which is illustrated in part (a) of Fig. 4. Part (b) of

Fig. 4 shows the particle distribution of the oblique light beam

transmitted through the same substrate. Note that the most part

of the calculated particles are transmitted through the substrate

without being scattered (peak in the upper half of Fig. 4 part (b)).

It can be seen that the model shows the correct tendency with

a statistical noise which depends on to the number of simulated

photon particles, completed time steps and employed memory

factor.
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Figure 3. Logarithmic contour plot of the reflection point spread function of

a perpendicular incident light beam. The modeled material has a thickness

of 1L, an isotropic scattering with τ = 0.333L and an absorption coefficient

of τa = 0.167L in plot (a) and τa = 1.5L in plot (b). The depicted noise level

is about 1% of the peak value.
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Figure 4. Plot (a) shows the logarithmic contour plot of the reflection point

spread function of a light beam with an incidence angle of 45 degrees en-

tering the substrate in the lower part of the plot. The modeled material has

a thickness of 1L, an isotropic scattering with τ = 0.333L and no absorption.

Plot (b) shows the transmission point spread function of the same configu-

ration.



Conclusion
We presented a general and efficient stochastic modeling

framework that allows to simulate light propagation in scattering

and absorbing materials. By extracting the relevant statistics, it

is possible to compute any scattered light characteristics like the

point-spread function in a reflection or transmission configura-

tion. The approach starts form any arbitrary single scattering an-

gle distribution specific for a given material and its scattering and

absorption frequencies. In a first step, the joint distribution func-

tion of photon position and direction at time t + dt conditional

on the photon position and direction at time t is determined. This

distribution function is computed by a Monte Carlo simulation,

which has to be performed only once for a given material and

time step dt. The tabulated joint distribution function is then em-

ployed to efficiently compute the particle propagation through

the given material. This framework is very general and efficient

for isotropic media, however, its extension for anisotropic struc-

tures will be a challenge in the future. The approach may be

easily extended to account for surface effects and non-isotropic

materials by using multiple tables. Moreover, wavelengths de-

pendent absorption coefficients and scattering tables will allow

to simulate the color effects in halftone prints.
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