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Abstract 
The color solid includes all colors perceived by the human 

visual system associated to physical color stimuli. The optimal 
or MacAdam colors define its frontier. However, the MacAdam 
limits, and therefore the shape and volume of the color solid, 
depend on the illuminant or real light source, even in a uniform 
color space. In general, the greater the volume of the color 
solid, the greater the number of distinguishable colors, that is, 
better colorimetric rendering or quality index. In this work we 
show two methods to estimate how many distinguishable colors 
are inside the color solid, particularly using constant lightness 
planes. The first method fills each constant lightness MacAdam 
loci in the CIECAM02 chromaticity diagram by squares with 
unity area. The second method uses the Krauskopf & 
Gegenfurtner‘s discrimination model, which permits to fill the 
constant lightness MacAdam loci with discrimination ellipses 
increasing in area with increasing distance from the 
achromatic point. In this way, accumulating the computation of 
the distinguishable colors for each constant lightness plane, we 
can estimate the total number of distinguishable colors, so we 
can establish an absolute ranking of colorimetric quality or 
color rendering, unlike the CIE color rendering algorithm. 
Applying both methods for the illuminants A, C, D65, E, F2, F7 
and F11 and the real light sources HP1-3, the first position is 
for the illuminant E, followed by the illuminants C, D65 and 
F7, and the last positions of this comparative are for the real 
light sources HP2, HP3 and HP1. 

Introduction 
Since the human color perception is essentially tri-variant 

all distinguishable colors by the human visual system are 
distributed in a 3D structure named color solid. The colors 
delimiting the borders of the color solid are named optimal 
colors and they were exhaustively studied by D.L. MacAdam1-2 
in 1935, so the frontiers of the color solid are also named 
MacAdam limits. The shape of the Rösch-MacAdam color 
solid does not vary only depending on the color space, but also 
depending on the illuminant or light source. In the scientific 
literature there are colorimetric graphs of the color solid under 
different illuminants3-5. In a recent work6 we have 
demonstrated that, even in the more uniform color spaces 
(CIECAM02, DIN99d, etc), the shape and volume of the color 
solid change with the illuminant or real light source (Figure 1). 
The greater color solid volume, the greater the number of 
distinguishable colors, that is, the colorimetric rendering or 
quality index is better. Therefore, estimating the number of 
distinguishable colors can be an alternative for the current 
algorithm of the color rendering of light sources published by 
CIE7-11, which is based on the color difference between a pair 
of corresponding colors (a color chip illuminated under the test 
lamp and the reference illuminant). 

 

 

 

 

 
Figure 1. Rösch-MacAdam color solid in the CIECAM02 color space for 
some illuminants (D65 and F11) and one real light source (HP1). The 
step between adjacent lightness planes is taken from the lightness step 
∆L* = 5, from 1 to 100, in order to avoid aliasing. 

In this work we show two methods that are an alternative 
to those just recently discussed by Kuehni12 for the 
computation of the total number of discernible colors. In both 
methods we firstly calculate the number of distinguishable 
colors in constant lightness planes of the color solid, and 
accumulating the partial counts for each lightness plane we can 
compute the total number of the distinguishable colors. The 
first method, more easy, intuitive and computationally shorter, 
consists in filling the constant lightness MacAdam loci with 
squares with unity area in a uniform chromaticity diagram, for 
instance, in the CIECAM02 color space. In this case, the color 
metric would be based on spheres, so the use of squares (cubes) 



 

 

is a good initial approximation, although it would be more 
adequate to fill the color solid with a spheres packing 
algorithm. On the other hand, the second method takes into 
account the Krauskopf & Gegenfurtner’s discrimination 
model13, based on psychophysical data, and consists in filling 
the constant lightness MacAdam loci with discrimination 
ellipses increasing in area with increasing distance from the 
achromatic point. 

Therefore, selecting some illuminants and light sources we 
can compute the total number of associated distinguishable 
colors. These results establish an absolute ranking of color 
rendering, unlike the current CIE color rendering algorithm. In 
this work we make a comparison between a set of illuminants 
(A, C, D65, E, F2, F7, F11) and light sources (HP1-3) 
published by CIE, and their color rendering is evaluated using 
the proposed methods and also the standard procedure, which is 
not based on the computation of the discernible colors. 

Methods 
Before describing the algorithms which constitute the aim 

of this work, it is necessary to discuss some details about the 
calculation of the MacAdam limits under several illuminants 
and light sources. 

MacAdam limits under different illuminants 
The MacAdam limits are calculated taking into account an 

improved algorithm6 developed from the original MacAdam’s 
algorithm. With this new algorithm we can obtain the optimal 
colors for any lightness value and any illuminant or light source 
and calculate the complete associated color solid. The 
illuminants and real light sources used in this work were taken 
from CIE14, and they can be separated into three categories: 
continuous spectra type (illuminants A, C, E and D65), 
discontinuous spectra type (fluorescent illuminants F2, F7 and 
F11), and real light sources with very peaked spectra (HP1: 
standard high pressure sodium lamp; HP2: color enhanced high 
pressure sodium lamp; and, HP3: high pressure metal halide 
lamp). Figure 1 shows the color solid in the CIECAM02 color 
space obtained for these illuminants and light sources. It can be 
clearly seen that these color solids have different shapes and 
volumes. From an intuitive point of view, taking into account 
only the shape and volume of these color solids, we would 
predict a greater number of distinguishable colors for D65 than 
for the illuminant F11 and light source HP1, so probably the 
illuminant D65 would have the highest color rendering value of 
this restricted comparison. 

The number of distinguishable colors inside the color solid 
can be computed assuming some conditions. A priori, this is 
achieved by estimating the number of the discrimination 
ellipsoids filling the color solid. Usually the problem is 
simplified by fixating the luminance factor Y or the lightness 
L*, so the computation of ellipsoids is replaced by the simpler 
computation of the discrimination ellipses plus the interpolation 
of the just-noticeable lightness differences between a fixed 
value and the next one12. Experimental data about 
discrimination ellipses abound in the literature13,15,16. We have 
chosen the Krauskopf and Gegenfurtner data13,16 because they 
permit a homogeneous sampling of the color solid. This 
procedure could seem an unnecessary complication of a simple 
problem, because, once the MacAdam loci are computed, we 
could assume that their areas (see again Figure 1) in a given 
color space are a measurement of the size of the color gamut of 
the human visual system, or even of a digital color device 

(capture, display or printing). However, in this way the result 
obtained would be dependent on the color space used, whereas 
this would not happen with the new procedure we propose. 
Therefore, using constant lightness planes, and only 
considering the lightness step or threshold ∆L* = 1, from 1 to 
100, we could pack with ellipses the MacAdam limits taking 
into account the proposed discrimination model, and after that, 
sum all partial counts (distinguishable colors) obtained in each 
constant lightness planes. 

However, before describing below the adaptation details 
of the Krauskopf & Gegenfurtner model, we have considered 
interesting to use a simpler discrimination model based on 
squares instead of ellipses. The reason to do this is evident: if 
we use a true uniform color space, the discrimination ellipsoids 
are transformed into spheres, so a good initial approximation 
could be use cubes instead of spheres. Since the CIECAM02 
color space is currently the most uniform color space, and we 
have the color solids for several illuminants and light sources 
encoded in this color space, we can estimate the number of 
distinguishable colors in this color space summing how many 
squares are inside the constant lightness MacAdam loci. It is 
not the perfect solution, because it would be better to use 
circles instead of squares, and the CIECAM02 color space also 
has some uniformity defects, but this partial solution is 
interesting and powerful due to its simplicity. Comparing a 
priori both packing methods, with ellipses or squares, we could 
say that the first one would give the total number of 
distinguishable colors by defect, while the second one would 
give a result by excess. Therefore, we have two algorithms to 
delimit the true total number of discernible colors inside the 
color solid, as much for the human visual system under several 
illuminants and light sources as for other color imaging 
devices. 

Squares packing method of the MacAdam loci 
This method consists of filling the constant lightness 

MacAdam loci, encoded by the CIECAM02 color space and 
plotted in a (aM, bM) chromaticity diagram, with squares with 
unity area. To do this, the initial XYZ data of the optimal 
colors associated to the illuminant/light source are transformed 
into perceptual variables (aM, bM, J) of the CIECAM02 color 
appearance model17. Then, the packing algorithm draws the 
first square around the achromatic point and next successive 
non-overlapping squares are drawn from this first square. This 
geometric procedure is simple, but the difficulty is in the 
computational cost due to the very high number of the counted 
color-squares (around some thousands) for each constant 
lightness MacAdam loci (from 1 to 100 lightness values with 
∆L* = 1). Figure 2 shows an example of a MacAdam locus 
packed with squares with this method. 

Ellipses packing method of the MacAdam loci 
As we advanced above, this method is based on the 

adaptation of the experimental data of Krauskopf and 
Gegenfurtner in order to design a packing method with ellipses 
for the constant lightness MacAdam loci. The optimal colors 
encoded initially by the CIE-XYZ color space are transformed 
into a modified MacLeod-Boynton color space18 taking into 
account the change of illuminant/light source. This is necessary 
to apply the discrimination model derived from the 
experimental data of Krauskopf and Gegenfurtner. In this new 
color space the chromaticity coordinates for the equal-energy, 
perceptual or adapted white stimulus are (0,0), and the new 



 

 

chromaticity coordinates (l’, s’) are l’ = l – lE and s’ = s – sE 
where lE = 0.66537 and sE = 0.01608, after calculating the cone 
excitations LMS of the white stimulus E (XE = YE = ZE = 100) 
using the Smith-Pokorny fundamental matrix. These new 
chromaticity coordinates are re-scaled in such a way that the 
threshold around the equal energy white along the cardinal 
directions is one, that is, l’ and s’ are divided by, respectively 
0.0011 and 0.0012, according to the Krauskopf and 
Gegenfurtner data. 

However, since the MacAdam limits can be associated to 
illuminants or light sources different to the equal-energy 
illuminant E, before the color transform between the XYZ and 
LMS data it is necessary to apply a chromatic adaptation 
transform from the XYZ data encoded by the test illuminant to 
the corresponding XYZ data according to the illuminant E. To 
do this we have used the chromatic adaptation transform of the 
CIECAM02 color appearance model17. 

Returning to the modified MacLeod-Boynton color space, 
colors in the same vertical line in the chromatic diagram have 
constant L and M values, while colors in the same horizontal 
line have constant values for S and (L + M). Accordingly, a 
vertical line contains colors that would give constant response 
in a red-green mechanism, T = L – αM, no matter the value of α. 
Analogously, a horizontal line contains colors yielding constant 
response in a yellow-blue mechanism of the type D = S – 
β(L+M), no matter the value of β. In particular, those colors in 
the D = 0 and T = 0 lines elicit responses only from the T or the 
D mechanism, respectively, and are therefore the cardinal 
directions of T and D. 

With these preliminaries, the discrimination ellipses in this 
color space are computed as follows. The discrimination ellipse 
around the equal-energy white (T = 0, D = 0) defines the unity 
threshold in each cardinal direction. Thus, with this metric the 
discrimination ellipse around (T = 0, D = 0) is a circle of unity 
radius. Let us consider a pedestal in the T cardinal direction. 
Thresholds along this direction are proportional to the T 
response to the pedestal, whereas thresholds along the 
orthogonal D direction are constant. Analogously, if the 
pedestal is on cardinal direction D, thresholds along the D 
direction are proportional to the D response to the pedestal, 
whereas they are constant along the orthogonal T direction. In 
consequence, discrimination ellipses around stimuli in one of 
the cardinal directions are oriented along that direction. The 
rate at which the major axis of each ellipse changes along each 
cardinal direction was taken from the experimental data of 
Krauskopf and Gegenfurtner. When the pedestal is not on one 
of the cardinal directions, the laws governing thresholds are not 
so simple. Discrimination ellipses around a pedestal in the first 
or third quadrant of the modified MacLeod-Boynton space 
seem to be oriented along the cardinal directions. The sizes of 
the major and minor axis of the ellipses are proportional to the 
T or D response elicited by the pedestal. This result can be 
explained if we admit the existence of two independent 
discrimination mechanisms, whose cardinal directions are the T 
and D directions of MacLeod-Boynton’s chromaticity diagram, 
and that interact vectorially. However, discrimination ellipses 
around pedestals in the second or fourth quadrant seem to be 
oriented along the direction defined by the pedestal. This result 
seems to imply the existence of a continuum of mechanisms 
tuned in along equally spaced directions in the color space. The 
directions along which are tuned these hypothetical 
mechanisms could be deduced approximately from the 
experimental data, but the rate of increment of threshold along 

each of these directions cannot. Although it could reasonably 
be admitted that thresholds again would increase with 
increasing distance to the white stimulus, the actual law of 
variation would still to be determined. Because our aim is to 
compare the number of ellipses within the MacAdam limits in 
the human visual system under several illuminants and light 
sources, and not to reach the best estimation of this number, the 
model of two cardinal directions is enough. 

The next problem to solve is which method to use to pack 
the discrimination ellipses. We have followed two different 
procedures. With what we call the tangent criterion, we 
determine the position of the centers of the ellipses to verify 
two conditions: 1) each ellipse is tangent to the other four 
surrounding it and 2) the center of two adjacent ellipses have 
either the same T or the same D value. This criterion does not 
yield optimal packing, because the gaps between ellipses 
increase with the distance to the achromatic point. The second 
strategy, that we call dense packing, consists in placing the 
centers of the ellipses on the centers of the tiles of an hexagonal 
mosaic covering optimally the space to which we have applied 
a non-linear transform [x*f(x), y*f(y)]. The functions f(x) and 
f(y) have been found empirically, and verify that the overlap 
between ellipses is small. In this way we come nearer to 
optimum ellipse packing. These ellipse packing algorithm were 
applied for the first time in making a comparison between the 
color gamuts of the human visual system and a conventional 
digital camera19 assuming the same color metrics for both input 
devices, and it was found that the two packing criteria produce 
basically the same results. 

Results and Discussion 
The results obtained with the two packing algorithms are 

summarized in Figures 2-5. Firstly, Figure 2 shows an example 
of a MacAdam locus packed with squares. As we said above, 
the number of discernible colors obtained with this method 
would be very large, so the visualization of the MacAdam loci 
filled with squares with unity area is not easy. For this reason, 
we have shown the results for a high lightness plane associated 
to one illuminant because here the number of distinguishable 
colors is not so high and the drawing of the squares can be 
seen. Afterwards, we will show a graph and table where the 
total number of discernible colors for different illuminants and 
light sources will be shown. 

 
Figure 2: Packing with squares of unity area of the MacAdam locus for 
the lightness plane L* = 98 under illuminant D65 in the CIECAM02 
chromaticity diagram. N is the number of discernible colors computed 
inside this MacAdam locus. Take into account that the axis are not 
regular and the squares seem rectangles. 



 

 

As it was also advanced above, and as it can be seen in 
Figures 4, working with the ellipse packing method the number 
of distinguishable colors would be a lot smaller than with the 
squares packing method. However, it is important to remark a 
visualization effect produced in both methods, above all in the 
second one. As it can be seen in Figures 3 and 4, and in minor 
detail in the above figure, there are ellipses (squares) almost 
outside the MacAdam boundary. This occurs because the 
MacAdam loci are complex closed curves so any gap, filled 
partially or completely with a square/ellipse, is considered a 
new discernible color. 

 

 

 
Figure 3: Dense packing with ellipses of the same constant lightness (L* 
= 50) MacAdam locus in the modified MacLeod-Boynton’s chromaticity 
diagram for different illuminants and light sources: D65 (top), F11 
(center) and HP1 (bottom). 

 

 

 
Figure 4: Dense packing with ellipses of the same constant lightness (L* 
= 30) MacAdam locus in the modified MacLeod-Boynton’s chromaticity 
diagram for different illuminants and light sources: D65 (top), F11 
(center) and HP1 (bottom). 

The number of distinguishable colors, N, for each constant 
lightness plane and illuminant/light source can be collected as 
in Figure 5. If the lightness step is ∆L* = 1, then we can obtain 
the total number of distinguishable colors calculating the area 
beneath each curve plotted in Figure 4, i.e., accumulating the 
partial counts of discernible colors from similar figures as 
Figures 2-4. 

It is interesting to make again a comparison between the 
packing methods, above all taking into account the color space 
used for encoding the color solid. In CIECAM02 color space 
(Figure 1) the MacAdam loci near to absolute black point 
shrink progressively until they become a single point or black 
vertex. This behavior is equivalent in the other side (vertex of 
the absolute white). So, the top graph of Figure 5 clearly shows 
a maximum in the middle of the curve, near the middle 



 

 

lightness range. However, in MacLeod-Boynton’s color space 
(compare the scaling of Figures 3 and 4), as it also happens in 
the standard CIE-XYZ or CIE-u’v’Y color spaces, the 
MacAdam loci associated to a very low lightness are large. So, 
unlike the top graph, the bottom graph of Figure 5 clearly 
shows a maximum in the beginning of the curve, in the 
lightness value L* = 1, when we suppose that the value N for 
L* = 0 is zero. Therefore, as we advanced in the introduction, 
both methods and used color spaces are an approximations, by 
defect (ellipses, MacLeod-Boynton) and excess (squares, 
CIECAM02), of the accurate computation of the total number 
of discernible colors. 

 

 

 
Figure 5: Partial counts of discernible colors vs. lightness value for the 
illuminant D65 taking into account both packing methods: squares (top) 
and ellipses (bottom). The total number of the distinguishable colors is 
the area beneath each curve. 

Next, it is interesting to make a comparison of the 
obtained with different illuminants, light sources and the used 
packing methods with respect to the standard CIE color 
rendering algorithm7. Taking into account these parameters and 
the selected illuminants and light sources, we have included in 
Table 1 a colorimetric quality arrangement according to the 
simplest method used (squares method). It is important again to 
remember that, unlike both proposed methods, the standard 
CIE color rendering index (Ra) is a relative colorimetric quality 
index because each test illuminant or light sources can have a 
different reference illuminant. In contrast, both proposed 
methods try to establish an absolute colorimetric quality index 
without the need to establish a reference illuminant and to 
calculate color differences between a corresponding color pair, 
but only calculating the volume of the associated color solid. 

Table 1: Total number of the distinguishable colors of several 
illuminants and light sources according to both packing 
methods of the constant lightness MacAdam loci. 

Light 
source 

Ellipses 
method 

Squares 
method 

Ra 
(CIE) 

Ranking 

A 25,851 1,752,861 99.58 5 
C 33,500 2,046,392 97.39 2 

D65 30,736 2,013,114 99.58 3 
E 30,274 2,050,033 95.11 1 
F2 26,323 1,665,000 62.83 7 
F7 30,732 1,968,210 90.23 4 

F11 26,311 1,735,126 82.91 6 
HP1 22,609 1,050,525 8.29 10 
HP2 25,465 1,663,648 82.59 8 
HP3 25,492 1,661,768 82.50 9 

 
It can be seen in this table, and taking into account the 

ranking order established according to the used simplest 
method of classifying the colorimetric rendering of illuminants 
and light sources, that the first position is for the illuminant E, 
followed by the illuminants C, D65 and F7, and the last 
positions of this absolute comparative are for the real light 
sources HP2, HP3 and HP1. Some ranking positions coincide 
with the standard criterion established by CIE, above all for the 
low portion of the used ranking value. But, in the other hand, 
this new analysis permits to distinguish the colorimetric quality 
of the standard illuminants with CIE color rendering indexes 
near 100, as for example the illuminants A, C, D65 and E. In 
particular, we think the logic first position of this comparative 
should be for the equal-energy illuminant E, and this has been 
shown in this work, although maybe it could be crucial the 
natural evolution of the adaptation of the human visual system 
to the daylight, with more blue spectral component that the 
equal-energy illuminant E. 

Finally, it is interesting to compare the results obtained  
with the squares method with those recently described by 
Kuehni12. In particular, our result coincides approximately with 
some studies described in this reference book. 

Conclusions 
After analyzing our results we can say that we have found 

an alternative procedure for calculating the color rendering 
index of the illuminants and light sources, based on the 
computation of the total number of distinguishable colors inside 
the associated color solid. It is an easy method, particularly 
when the squares packing method is used in a uniform color 
space (CIECAM02), although we will try to apply the best 
method for packing the MacAdam loci with spheres20. Besides, 
it establishes a colorimetric classification of the illuminants and 
light sources without the necessity to take a reference 
illuminant, so the color rendering index we propose is absolute. 
On other hand, this work can be extended to compare the 
gamut volumes for color imaging devices19,21. Finally, this 
work also shows that the total number of discernible colors is 
around some millions, and that this number depends on the 
light source, so the lighting applications, i.e. in sports, 
museums22-24, cinema, etc, can be also potentially interesting. 
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